Abstract:
An airseal for sealing between a rotating component and a stationary component of a turbine engine includes a sealing surface defining a spacing between the airseal and a rotating component of the turbine engine and a mounting flange to secure the airseal to a stationary component of the turbine engine. An airseal body extends between the sealing surface and the mounting flange. The airseal body includes a cavity configured to absorb thermal energy transferred into the airseal from a flowpath of the turbine engine. A gas turbine engine includes a rotating component and a stationary component located radially outboard of the rotating component. An airseal is located therebetween and includes a sealing surface and a mounting flange to secure the airseal to the stationary component. An airseal body extends between the sealing surface and the mounting flange and includes a cavity to absorb thermal energy transferred into the airseal.
Abstract:
A heat shield includes a first end configured to connect to an inner engine case at an inner connecting point, and a second end configured to connect to an outer engine case at an outer connecting point. The heat shield also includes a bulge extending in an aft direction from a radially upstream portion. A compressor section and a gas turbine engine including the heat shield are also disclosed.
Abstract:
A blade outer air seal (BOAS) for a gas turbine engine includes, among other things, a seal body having a radially inner face and a radially outer face that axially extend between a leading edge portion and a trailing edge portion. The BOAS includes a trough disposed on the radially inner face and an abradable seal received within the trough. The trough is open to expose a leading edge of the abradable seal to a core flow path of the gas turbine engine.
Abstract:
An airseal for sealing between a rotating component and a stationary component of a turbine engine includes a sealing surface defining a spacing between the airseal and a rotating component of the turbine engine and a mounting flange to secure the airseal to a stationary component of the turbine engine. An airseal body extends between the sealing surface and the mounting flange. The airseal body includes a cavity configured to absorb thermal energy transferred into the airseal from a flowpath of the turbine engine. A gas turbine engine includes a rotating component and a stationary component located radially outboard of the rotating component. An airseal is located therebetween and includes a sealing surface and a mounting flange to secure the airseal to the stationary component. An airseal body extends between the sealing surface and the mounting flange and includes a cavity to absorb thermal energy transferred into the airseal.
Abstract:
A heat shield assembly for a gas turbine engine includes a first heat shield segment defined about an axis and a second heat shield segment defined about the axis. A double circumferential lap joint is defined between the first heat shield segment and the second heat shield segment.
Abstract:
A probe assembly for a gas turbine engine is disclosed. The probe assembly may include a probe, and a fastener to retain the probe within a case of the gas turbine engine, the fastener including a sealing arrangement with a heat shield of the gas turbine engine.
Abstract:
A heat shield assembly for a gas turbine engine includes a first heat shield segment defined about an axis and a second heat shield segment defined about the axis. A double circumferential lap joint is defined between the first heat shield segment and the second heat shield segment.
Abstract:
A stator damper is disclosed. The stator damper has a body section and a damper finger. The body section rests against a stator assembly and a portion of each damper finger rests against a compressor casing. The stator damper is radially compressed between the stator assembly and the compressor casing. Thus, the stator damper exerts a radial force against the stator assembly. In this manner, relative motion of the stator assembly is damped.
Abstract:
A blade outer air seal according to an example of the present disclosure includes a seal body extending circumferentially about an axis and including at least one channel having a substantially solid radially outer surface. A substrate is radially inward of the at least one channel with respect to the axis. The substrate and the at least one channel form at least one cavity. A rotor rub strip is radially inward of the substrate.
Abstract:
A probe assembly for a gas turbine engine is disclosed. The probe assembly may include a probe, and a fastener to retain the probe within a case of the gas turbine engine, the fastener including a sealing arrangement with a heat shield of the gas turbine engine.