Abstract:
A gas turbine engine includes a core flow passage, a bypass flow passage, and a propulsor arranged at an inlet of the bypass flow passage and the core flow passage. The propulsor includes a row of propulsor blades. The row includes no more than 20 of the propulsor blades. The propulsor has a pressure ratio between about 1.2 and about 1.7 across the propulsor blades.
Abstract:
Plated polymeric articles having a composite layup structure and method of making the same are disclosed. A plated polymeric article comprises a composite layup having first and second polymer layers. The plated polymeric article further comprises a first metal plated onto the polymer. Additionally, methods for fabricating a plated polymeric article are disclosed. A composite layup is provided and compression molded into a desired shape having an outer surface. The outer surface of the article is prepared to receive a catalyst and then is activated with the catalyst. A first metallic layer is then plated onto the outer surface.
Abstract:
Plated polymeric gas turbine engine parts and methods for fabricating lightweight plated polymeric gas turbine engine parts are disclosed. The parts include a polymeric substrate plated with one or more metal layers. The polymeric material of the polymeric substrate may be structurally reinforced with materials that may include carbon, metal, or glass. The polymeric substrate may also include a plurality of layers to form a composite layup structure.
Abstract:
A component comprises a non-metallic core having an outer surface, a first catalyst deposited onto at least a first portion of the outer surface of the non-metallic core, a second catalyst deposited onto at least a second portion of the outer surface of the non-metallic core, an electrical interface, and a metallic coating. The electrical interface is plated onto the first catalyst, and includes a first interface layer electroless plated onto the first catalyst. The metallic coating is plated onto the second catalyst.
Abstract:
A gas turbine engine includes a gear assembly and a bypass flow passage that includes an inlet and an outlet that define a design pressure ratio between 1.3 and 1.55. A fan is arranged at the inlet. A first turbine is coupled with a first shaft such that rotation of the first turbine will drive the fan, through the first shaft and the gear assembly, at a lower speed than the first shaft. The fan includes a row of fan blades. The row includes 12-16 (N) fan blades, a solidity value (R) that is from 1.0 to 1.3, and a ratio of N/R that is from 10.0 to 16.
Abstract:
A spinner for a gas turbine engine comprises an outer shell for defining an airflow path when mounted in a gas turbine engine. An inner surface is provided with a plurality of webs. A gas turbine engine and a fan section for a gas turbine engine are also disclosed.
Abstract:
A gas turbine engine includes a gear assembly and a bypass flow passage that has an inlet. A fan is arranged within the bypass flow passage. A first turbine is coupled with a first shaft, which is coupled with the fan. A second turbine is coupled with a second shaft. The fan includes a hub and a row of fan blades that extend from the hub. The row includes 12 to 14 (N) of the fan blades, a solidity value (R) at tips of the fan blades that is greater than 0.85 and less than 1.1, and a ratio of N/R that is from 9 to 20.
Abstract:
A gas turbine engine includes a core flow passage, a bypass flow passage, and a propulsor arranged at an inlet of the bypass flow passage and the core flow passage. The propulsor includes a row of propulsor blades. The row includes no more than 20 of the propulsor blades. The propulsor has a pressure ratio between about 1.2 and about 1.7 across the propulsor blades.
Abstract:
In a featured embodiment, a fan rotor comprises a platform. Clevises extend radially inwardly of the platform. Each clevis has an aperture. A hub has hub lugs positioned intermediate spaced ends of the clevises, and apertures. A pin extends through the apertures in the hub and the clevises to connect the platform to the hub. The apertures in the clevises are formed to have an inner surface for supporting the pin. A method of forming a fan blade platform is also disclosed.
Abstract:
Plated polymeric gas turbine engine parts and methods for fabricating lightweight plated polymeric gas turbine engine parts are disclosed. The parts include a polymeric substrate plated with one or more metal layers. The polymeric material of the polymeric substrate may be structurally reinforced with materials that may include carbon, metal, or glass. The polymeric substrate may also include a plurality of layers to form a composite layup structure.