Abstract:
A fan blade and method of manufacturing a fan blade includes a metallic fan blade body with a crystalline oxidation layer and immersing the crystalline oxidation layer in a solution of ceramic nanosheets in suspension. A fan blade for a gas turbine engine includes a metallic fan blade body having a tip with a crystalline oxidation layer, wherein the crystalline oxidation layer includes pores containing ceramic nanosheets.
Abstract:
A flow battery includes a cell that has first and second flow fields spaced apart from each other and an electrolyte separator layer. A supply/storage system is external of the cell and includes first and second vessels fluidly connected with the first and second flow fields, and first and second pumps configured to selectively move first and second fluid electrolytes between the vessels and the first and second flow fields. The flow fields each have an electrochemically active zone that is configured to receive flow of the fluid electrolytes. The electrochemically active zone has a total open volume that is a function of at least one of a power parameter of the flow battery, a time parameter of the pumps and a concentration parameter of the fluid electrolytes.
Abstract:
A sealing process includes applying a first reactant to a substrate having a porous structure, the first reactant comprising a chromium (III) precursor and a transition metal precursor and applying a second reactant to the first reactant, the second reactant comprising a rare earth element precursor and an alkaline earth element precursor to form reservoirs of trivalent chromium in pore space of the porous structure, and a physical barrier over the substrate and the reservoirs.
Abstract:
A cooling system includes an electrocaloric element (12) having a liquid crystal elastomer or a liquid form liquid crystal retained in an elastomeric polymer matrix. A pair of electrodes (14.16) is disposed on opposite surfaces of the electrocaloric element. A first thermal flow path (18) is disposed between the electrocaloric element and a heat sink (17). A second thermal flow path (22) is disposed between the electrocaloric element and a heat source (20). The system also includes a controller (24) configured to control electrical current to the electrodes and to selectively direct transfer of heat energy from the electrocaloric element to the heat sink along the first thermal flow path or from the heat source to the electrocaloric element along the second thermal flow path.
Abstract:
A flow battery includes a cell that has first and second flow fields spaced apart from each other and an electrolyte separator layer. A supply/storage system is external of the cell and includes first and second vessels fluidly connected with the first and second flow fields, and first and second pumps configured to selectively move first and second fluid electrolytes between the vessels and the first and second flow fields. The flow fields each have an electrochemically active zone that is configured to receive flow of the fluid electrolytes. The electrochemically active zone has a total open volume that is a function of at least one of a power parameter of the flow battery, a time parameter of the pumps and a concentration parameter of the fluid electrolytes.
Abstract:
An article includes a substrate, a ceramic barrier coating, and a layer of networked ceramic nanofibers. The ceramic barrier coating is disposed on the substrate and has a porous columnar microstructure. The layer of networked ceramic nanofibers is disposed on the ceramic barrier layer and seals the pores of the porous columnar microstructure.
Abstract:
An article includes a ceramic-based substrate and a barrier layer on the ceramic-based substrate. The barrier layer includes a matrix phase and a network of gettering particles in the matrix phase. The gettering particles have an average maximum dimension between about 30 and 70 microns. The gettering particles have maximum dimensions that range from about 1 to 100 microns, and a dispersion of barium-magnesium alumino-silicate particles in the matrix phase. A composite material and a method of applying a barrier layer to a substrate are also disclosed.
Abstract:
An article includes a ceramic-based substrate and a barrier layer on the ceramic-based substrate. The barrier layer includes a matrix phase and a network of gettering particles in the matrix phase. The gettering particles have an average maximum dimension between about 30 and 70 microns. The gettering particles have maximum dimensions that range from about 1 to 100 microns, and a dispersion of barium-magnesium alumino-silicate particles in the matrix phase. A composite material and a method of applying a barrier layer to a substrate are also disclosed.
Abstract:
An article includes a ceramic-based substrate and a barrier layer on the ceramic-based substrate. The barrier layer includes a matrix of SiO2 and a dispersion of silicon oxycarbide particles in the matrix. The silicon oxycarbide particles have Si, O, and C in a covalently bonded network, and a dispersion of barium-magnesium alumino-silicate particles in the matrix. The barium-magnesium alumino-silicate particles have an average maximum dimension that is between about 10-40% of an average maximum dimension of the silicon oxycarbide particles. A composite material and a method of applying a barrier layer to a substrate are also disclosed.
Abstract:
A method of making cerium citrate includes combining cerium carbonate and citric acid to produce cerium citrate and carbon dioxide. The cerium citrate is substantially free of negative ions other than citrate. The cerium citrate can be used in a corrosion inhibitor composition.