Abstract:
The present invention relates to a microbubble comprising a monolayer of porphyrin-phospholipid conjugate, said microbubble having encapsulated therein, and to the use of said microbubble in ultrasound imaging of a target area in a subject.
Abstract:
There is provided herein a nanovesicle comprising a monolayer of phospholipid, porphyrin-phospholipid conjugate and a peptide encapsulating a hydrophobic core, wherein the peptide comprises an amino acid sequence capable of forming at least one amphipathic α-helix; the porphyrin-phospholipid conjugate comprises one porphyrin, porphyrin derivative or porphyrin analog covalently attached to a lipid side chain, preferably at the sn-1 or the sn-2 position, of one phospholipid; the molar % of porphyrin-phospholipid conjugate to phospholipid is 35% or less; the nanovesicle is 35 nm in diameter or less.
Abstract:
There is herein described a nanovesicle comprising a bilayer of porphyrin-phospholipid conjugates. Each porphyrin-phospholipid conjugate comprises one porphyrin, porphyrin derivative or porphyrin analog covalently attached to a lipid side chain at one of the sn-1 or the sn-2 positions of one phospholipid. Further, the nanovesicle has a defined regioisomeric ratio of sn-1:sn-2 porphyrin-phospholipid conjugates.
Abstract:
The present invention relates to a microbubble comprising a monolayer of porphyrin-phospholipid conjugate, said microbubble having encapsulated therein, and to the use of said microbubble in ultrasound imaging of a target area in a subject.
Abstract:
The application relates to a nanovesicle comprising a bilayer of at least 15 mol% porphyrin-phospholipid conjugate, wherein the conjugate comprises a porphyrin, porphyrin derivative or porphyrin analog covalently attached to the phospholipid side chain. The nanovesicle can be used for photothermal therapy, photoacoustic imaging, and fluorescence imaging. The application also discloses a method of preparing the said nanovesicle.
Abstract:
The application relates to a nanovesicle comprising a bilayer of at least 15 mol % porphyrin-phospholipid conjugate, wherein the conjugate comprises a porphyrin, porphyrin derivative or porphyrin analog covalently attached to the phospholipid side chain. The nanovesicle can be used for photothermal therapy, photoacoustic imaging, and fluorescence imaging. The application also discloses a method of preparing the said nanovesicle.
Abstract:
Herein are provided nanoparticles comprising a nanocore of Raman-scattering material stabilized by a bilayer comprising a porphyrin-phospholipid conjugate, methods of making the same and their use in Surface Enhanced Raman Scattering.
Abstract:
There is provided herein, a texaphyrin-phospholipid conjugate, wherein the texaphyrin-phospholipid conjugate comprises a texaphyrin, texaphyrin derivative or texaphyrin analog covalently attached to a lipid side chain of a phospholipid.
Abstract:
The present invention provides a non-naturally occurring High-Density Lipoprotein-like peptide-phospholipid scaffold (“HPPS”) nanoparticle. More particularly, the invention provides a non-naturally occurring peptide-lipid nanoscaffold comprising: (a) at least one phospholipid; (b) at least one unsaturated lipid, preferably an unsaturated sterol ester, further preferably an unsaturated cholesterol ester, further preferably cholsteryl oleate; and (c) at least one peptide, the peptide comprising an amino acid sequence capable of forming at least one amphipathic a-helix; wherein the components a), b) and c) associate to form the peptide-phospholipid nanoscaffold. In embodiments of the present invention, a cell surface receptor ligand is incorporated into the HPPS. In one embodiment, the cell surface receptor ligand is covalently bonded to the peptide scaffold of the HPPS nanoparticles. In other embodiments, a cell surface receptor ligand is coupled to a lipid anchor and is displayed on the surface of the HPPS nanoparticles by incorporation of the lipid anchor into the phospholipids monolayer of the HPPS nanoparticle. The present invention also provides pharmaceutical formulations comprising HPPS nanoparticles and methods of making the HPPS nanoparticles.