Abstract:
A method, converter arrangement, and controller are disclosed for connecting an output of a converter with an electrical grid to control inrush currents into a grid filter assembly connected with the output of the converter, the electrical grid carrying an alternating current (AC) signal having one or more phases. The method includes determining a voltage of the AC signal and operating, after pre-charging a direct current (DC) link of the converter to a predetermined voltage, the converter using open-loop voltage control to produce an AC output signal that substantially matches the AC signal of the electrical grid. The open-loop voltage control is based on the determined voltage of the AC signal. The method further includes closing, after a predetermined amount of time of operating the converter using the open-loop voltage control, a switching device to thereby connect the output of the converter with the electrical grid.
Abstract:
A method of setting a reference DC-link voltage of a wind-turbine converter system is provided. At least at least one DC voltage demand from at least one generator-side inverter and at least one DC voltage demand are received from at least one grid-side inverter. A generator-side DC voltage demand value on the basis of the at least one DC voltage demand received from the at least one generator-side inverter. Also a grid-side DC voltage demand value is determined on the basis of the at least one DC voltage demand received from the at least one grid-side inverter. The highest DC voltage demand value out of the generator-side and grid-side DC voltage demand values is chosen. This chosen value corresponds to the set reference DC-link voltage.
Abstract:
The invention relates to wind turbines, particularly to controlling reactive power exchange between a power grid and a wind power plant. The wind power plant has a plurality of wind turbine generators each having a corresponding power converter with a converter controller. Further, the wind power plant has a power plant transformer with an on load tap changer coupled between the wind power plant and the power grid. The power plant controller is regulating the on load tap changer and is generating reactive component setpoints for the wind turbine generators, when determining a need for production of short-term reactive power due to a sudden change in reactive power measured at the point of common coupling.
Abstract:
The invention relates to a method for controlling power generation of a VSM wind turbine. The wind turbine comprises a machine side converter, a line side converter, a DC link, and an electric storage device electrically connected to the DC link. The method comprises determining a first power control signal to the machine side converter, determining a second power control signal for controlling a desired output power of the line side converter based on a storage device voltage error, and a power production reference, and determining a charging current reference for controlling charging and discharging of the electric storage device based on a DC-link voltage error.
Abstract:
Aspects of the present invention relate to a method for controlling an amount of reactive current provided from a wind turbine generator to a power grid during an abnormal power grid event, said wind turbine generator comprising a doubly-fed induction generator having a rotor and a stator, and a power converter coupling the rotor to the power grid, the power converter comprising a grid-side inverter, wherein the method comprises the step of balancing the reactive current provided to the power grid between a reactive stator current and a reactive grid-side inverter current, wherein the reactive grid-side inverter current is controlled in accordance with a reactive current capacity of a grid breaker receiving the reactive current provided by the grid-side inverter. Aspects of the present invention also relate to a wind turbine generator being capable of performing the method.
Abstract:
A method for use in controlling a wind turbine generator based on a condition of a power converter or a component forming part of a power converter in the wind turbine generator. The method comprises determining a condition of the power converter or the component forming part of a power converter, then comparing the condition to a predetermined threshold and modifying an operational parameter of the wind turbine generator if the condition substantially equals or exceeds the predetermined threshold. In particular, the invention proposes the wind turbine generator is derated if the condition of the power converter or the component forming part of a power converter substantially equals or exceeds the predetermined threshold.
Abstract:
A method is provided of controlling a doubly fed induction generator—(DFIG) wind turbine converter system if a sub-synchronous resonance event acts on the wind turbine. According to the method a sub-synchronous resonance event is detected. Thereupon, a switch from a non-SSR-current/voltage control mode to a SSR-control mode is performed. At least one of the following activities is performed in the SSR-control mode, namely: (i) freezing rotor AC voltages in magnitude and phase, (ii) altering at least one rotor-current-controller gain (iii) altering at least one rotor-current-controller time constant, to dampen the effect of the SSR-event on the wind turbine.
Abstract:
The present invention relates to a method for operating a doubly fed induction generator wind power facility during an OVRT event, said the wind turbine facility being adapted to inject active and/or reactive current into an associated grid, the method comprising the steps of determining the occurrence of an over voltage grid event, and maintaining a grid-side inverter of the doubly fed induction generator wind power facility fully operable during the over voltage ride though event so as to maintain a controllable active and/or reactive current capability during the over voltage grid event,?
Abstract:
A method of controlling a wind turbine generator is provided, the wind turbine generator converting mechanical energy to electrical. The method comprises: determining an electromagnetic power reference representing the electromagnetic power generated by the wind turbine generator, wherein the electromagnetic power reference is determined based on a desired output of the wind turbine generator; controlling the electrical power generated by the wind turbine generator using a control signal, wherein the control signal is derived from the electromagnetic power reference and is modified in dependence on an inverse power function of the wind turbine generator by incorporating minimal copper loss constraint and stator voltage limiting constraint such that non-linearity of the wind turbine generator is compensated in the control loop and it operates at its maximum efficiency. One effect of the method is that classical linear control loop design can be employed in spite of the plant being a non-linear identity.