Abstract:
Methods and devices include a printing device automatically receiving capabilities of all the document finishing devices currently operatively connected to the printing device. These capabilities include attribute/value pairs, which are document attributes and associated document attribute values made available by the document finishing devices. These methods and devices also automatically generate sets of fixed attribute/value pairs, based on the capabilities of the document finishing devices. Then, such methods and devices automatically display choices of the sets of fixed attribute/value pairs, along with individual attribute/value pairs, on a graphic user interface of the printing device. In response, these methods and devices receive user selections from the choices through the graphic user interface. These methods and devices automatically execute the user choices to perform printing of documents and finishing operations on the documents (using the printing device and the document finishing devices).
Abstract:
A system and method for optimizing toner usage on an output device capable of rendering in five or more colorants includes receiving a print job for rendering a print job. The method includes generating at least one candidate colorant combination using multiple colorants. The method includes determining at least one factor including (i) a toner usage, (ii) a toner cost, and (iii) an accuracy of the at least one candidate colorant combination for rendering a select object of the print job. The method further includes selecting an ideal candidate colorant combination based on a comparison of the at least one factor with one of a second candidate colorant combination and an original CMYK colorant combination.
Abstract:
A method and system for automating print system setup and distribution comprises at least one print system and a computer system comprising a processor, a data bus coupled to the processor, and a computer-usable medium embodying computer program code, the computer-usable medium being coupled to the data bus, the computer program code comprising instructions executable by the processor and configured for: collecting at least one incoming print job, analyzing the at least one incoming print job to determine at least one job characteristic, determining an optimal print engine solution according to a configuration of the at least one print system and the determined at least one job characteristic, notifying a user of the optimal print engine solution, and rendering the jobs.
Abstract:
Method, system, and graphical user interface for enabling optimal;colorant job programming. A graphical user interface displays a plurality of gamut mode selectable features. One or more of the gamut mode selectable features can be selected for image processing of an image. A graphical image can be displayed within the next of the user interface based on image processing of the image, and in response to selection of a gamut mode selectable feature. The resulting displayed graphical image with the user interface can demonstrate to a user the benefit of utilizing additional colorant on the image particular pixels in the graphical image, which can benefit from the additional colorant.
Abstract:
A print job is analyzed to determine what page locations can use optional colors and different image quality increase values of different optional colors at the page locations are calculated. Only one of the optional colors is selected, based on which optional color produces the highest print job image quality increase for all of the page locations of the print job. Each individual page of the print job is evaluated to determine if use of the selected optional color increases image quality of the individual page to identify page exceptions. Instructions to mount a selected replaceable printing module corresponding to the selected optional color are displayed, and the print job is printed using the selected replaceable printing module.
Abstract:
A system and method for automatic selection of at least one spot color to be processed by a digital image press includes identifying process colorants to determine principal and extended gamuts thereof. Spot color recipes of the principal and extended gamuts are retrieved from a spot color library, along with a set of attributes corresponding to use of colorants by the digital image press. For each spot color recipe, a combined attribute score is calculated relating to the principal gamut and the extended gamut, spot color recipe of the extended gamut or principal gamut is then identified for use based upon which has the higher combined attribute score. The spot color library is then updated in accordance with the identified recipe for production of each spot color. Print jobs are then output with the appropriate spot color recipe automatically selected.
Abstract:
A processor receives a print job, identifies possible extension marking materials to use to print the print job, and optimizes the order in which the extension marking materials will be used in multiple printing passes. A user interface outputs instructions to insert, into a receptacle, a first interchangeable supply container containing a first extension marking material that is in addition to base marking materials. A printing engine prints first markings (using the first extension marking material) that comprise a first portion of the print job. The user interface outputs instructions to return the partially printed print media to a sheet supply and to insert a second interchangeable supply container containing a second extension marking material. The printing engine prints second markings (using the second extension marking material) that comprise a second portion of the print job, on the partially printed print media, to produce the finally printed print media.
Abstract:
One embodiment of the disclosure relates to a method for creating a document print stream. The method includes receiving a first image in a first color model. The method includes generating a modified first image by extending original separation channels in the first image to include a fifth separation channel. The method includes generating a bitmap of the modified image. The method includes storing the modified image as a separation form. The method includes receiving a print job in the first color model. The method includes merging the separation form with the print job.
Abstract:
Methods and devices receive a print job, evaluate the print job to identify job parameter settings and associated sources of the job parameter settings, transmit the job parameter settings and the associated sources to a database, and transmit the print job to a marking device to cause the marking device to print the print job. These methods and devices also provide access to the database to view the job parameter settings and the associated sources, and/or change the job parameter settings. The access to the database is provided before and/or after the marking device prints the print job. When evaluating the print job, these methods and devices identify “potential” and “final” job parameter settings and associated sources. The final settings and sources are used to perform marking and finishing operations, while the potential setting and sources comprise a pre-printing, job preparation history in the database.
Abstract:
A method and system for automating print system setup and distribution comprises at least one print system and a computer system comprising a processor, a data bus coupled to the processor, and a computer-usable medium embodying computer program code, the computer-usable medium being coupled to the data bus, the computer program code comprising instructions executable by the processor and configured for: collecting at least one incoming print job, analyzing the at least one incoming print job to determine at least one job characteristic, determining an optimal print engine solution according to a configuration of the at least one print system and the determined at least one job characteristic, notifying a user of the optimal print engine solution, and rendering the jobs.