Abstract:
A method for calculating a mass flow rate of a cryogenic fluid within a flow tube includes positioning a sensor within a stream of cryogenic fluid flowing through the flow tube. The sensor is operatively coupled to a strain gauge. A difference between a dynamic pressure in the fluid stream and a static pressure in the fluid stream is measured and the mass flow rate of the cryogenic fluid within the flow tube is calculated.
Abstract:
A superconductive device (e.g., magnet) having a superconductive lead assembly and cooled by a cryocooler coldhead having first and second stages. A first ceramic superconductive lead has a first end thermally connected to the first stage and a second end thermally connected to the second stage. A jacket of open cell material (e.g., polystyrene foam) is in surrounding compressive contact with the first ceramic superconductive lead, and a rigid, nonporous support tube surrounds the jacket. This protects the first ceramic superconductive lead against shock and vibration while in the device. The rigid support tube has a first end and a second end, with the second end thermally connected to the second stage.
Abstract:
A low noise imaging apparatus for producing Magnetic Resonance (MR) images of a subject and for substantially minimizing acoustic noise generated during imaging is provided. The imaging apparatus comprises a magnet assembly, a gradient coil assembly, and a rf coil assembly, wherein at least one of the magnet assembly, the gradient coil assembly and the rf coil assembly are configured to reduce the generation and transmission of acoustic noise.
Abstract:
A cooling fluid coupling is disclosed for providing cooling fluid to a rotor having a super-conducting winding of a synchronous machine and a source of cryogenic cooling fluid. The fluid coupling comprises an inlet cooling tube and an outlet cooling tube in the rotor and coaxial with an axis of the rotor. The inlet cooling tube has an input port coupled to receive inlet cooling fluid from the source of cryogenic cooling fluid. The outlet cooling tube has an output port coupled to return cooling fluid from the rotor to source. A stationary motion gap seal separates the input port and output port of the coupling.