Abstract:
A laser welding method, a laser welded joint, an outer panel, and a structure for a rolling stock. In the laser welding method, a plurality of plate-like members (1) and (2) are overlapped with each other and a laser beam is continuously radiated thereto from the surface outside direction of the members while moving the laser beam. Polishing treatment is applied to the outer surface of the plate-like member (2) on the opposite side (1) of the outer surface to which the laser beam is radiated in a direction approximately parallel with the direction of weld lines by the laser beam beforehand so that the traces of the welding are visually inconspicuous.
Abstract:
A side construction 302 has an outside sheathing 306 and outside sheathing reinforcement members 307A and 307B joined to the outside sheathing 306 interiorly of the outside sheathing 306. The reinforcement member 307A (307B) is shaped like a hat in section. The reinforcement members 307A provided in the vicinity of a window opening portion have a laser welding spacing L1 of 80 mm and each have a hat width of 50 mm, while the reinforcement members 307B provided on other part have a laser welding spacing L1 of 100 mm and each have a hat width of 70 mm. The reinforcement members 307A and 307B each have a height of 25 mm.
Abstract:
A method of controlling the welding in a three-dimensional X-Y-Z coordinate system, in which method a welded structure is provided by a number of pieces arranged on a three-dimensional support base (2) in an assembly in accordance with the construction (1) to be welded, the construction (1) to be welded is photographed and a picture map made of the construction (1), by means of which picture map the weld points of the construction (1) are identified and welding parameters are determined therefor, especially the starting point and the weld type as well as the welding method to be used, and these control data are passed to a control system of the welding equipment. The welding is performed so that the control of the welding equipment in the X-Y plane is based on said picture map provided and said control data, and that the level of the surface to be welded in the direction of the Z-axis, i.e. the vertical axis, in the coordinate system is measured continuously and the level information thus determined is passed to the control system of the welding equipment (4) so as to control the welding equipment (4) in real time also in the direction of Z-axis.
Abstract:
A method and apparatus for permanently joining two or more metallic vehicle frame components using magnetic impulse welding techniques. The vehicle frame may include a pair of similar or dissimilar tubular side rail members in multiple sections joined together by a plurality of transversely extending tubular of 'C' or 'U' shaped cross members. A plurality of similar or dissimilar material brackets are joined to the side rails and/or cross members to facilitate the attachment of other portions of the vehicle to the vehicle frame. These components are joined via an overlap joint between two individual side rail sections, a cross member section and a side rail section, or a bracket and a side rail section or a cross member section. The first component and the second component, if tubular side rails, are sized so that they may be disposed telescopically with clearance. Similarly, the first component and second component, if a cross member/side rail, a bracket/cross member, or a bracket/side rail combination are sized and/or positioned so that some clearance exists between the components. An electromagnetic coil is provided for generating a magnetic field that causes the first component and the second component to move toward one another. Portions of the electromagnetic coil are disposed on either side of the side rail sections. A first end of the electromagnetic coil is connected through a switch to a first side of a capacitor, while a second end of the electromagnetic coil is connected directly to a second side of the capacitor. A source of electrical energy is provided for selectively charging the capacitor to store a quantity of electrical energy. By closing the switch, electrical energy is passed from the capacitor through the electromagnetic coil. Consequently, an intense electromagnetic field is generated about the first and second components. This force causes the first and second components to move toward each other at great velocities, when they meet, the large pressures produced on impact cause the first and second components to weld or molecularly bond.
Abstract:
A side construction 302 has an outside sheathing 306 and outside sheathing reinforcement members 307A and 307B joined to the outside sheathing 306 interiorly of the outside sheathing 306. The reinforcement member 307A (307B) is shaped like a hat in section. The reinforcement members 307A provided in the vicinity of a window opening portion have a laser welding spacing L1 of 80 mm and each have a hat width of 50 mm, while the reinforcement members 307B provided on other part have a laser welding spacing L1 of 100 mm and each have a hat width of 70 mm. The reinforcement members 307A and 307B each have a height of 25 mm.