Abstract:
A laboratory capper, decapper or combination capper/decapper includes a deck containing with a nest designed to hold an SBS-formatted tube storage rack, and a bit exchange magazine assembly containing one or more sets of adapter bits. The adapter bits are mounted on and unloaded from motor driven fittings, and are exchanged in order to cap or decap laboratory sample tubes or vials that have different head configurations. The bit exchange magazine assembly enables the bit to be exchanged robotically.
Abstract:
A method for filling a container (2) with a filling product, comprising the steps of: positioning the container (2) in a filling station (1) so that its mouth (2b) is below the filling valve (9); separating a treatment volume (40) of the neck (2a) comprised between the filling valve (9) and at least one part of the neck (2a) of the container (2) from an external environment (6) containing the body (2d) of the container (2); dispensing plasma into the treatment volume (40) so that it flows over the neck (2a) of the container (2); enabling the filling valve (9) to dispense the filling product into the container (2).
Abstract:
A fastening device for fastening a changeable attachment with a container handling station includes a first member and a second member formed as a fitting counterpart to said first member. The attachment can be transferred into the fastened position by uniting and rotating said members relative to each other. A fixed stop disposed on the fastening device in the fastened position prevents rotating the two members relative to each other in one rotational direction, and an elastic, radially snapable section acts as a stop without application of any external force and prevents the members from rotating relative to each other in the other rotational direction. The snapable section fastens the two members relative to each other and can be pressed in radially such that it no longer acts as a stop and the attachment can be rotated from the fastened position and removed from the container handling station.
Abstract:
A capping device fits caps onto containers by applying an axial force to the caps as they are threaded onto the containers. The capping device utilizes a spindle rotatable about an operational axis for imparting rotation to a capper unit. A connector coupled to the capper unit is releasably coupled to the spindle by a quick release mechanism. The quick release mechanism is normally biased in the locked position and is configured to automatically move from the unlocked position back to the locked position when the connector mates with the spindle as a user re-connects the capping unit back to the spindle. Methods of releasing and re-connecting the capping unit to the spindle are also disclosed.
Abstract:
A capping device fits caps onto containers by applying an axial force to the caps as they are threaded onto the containers. The capping device utilizes a drive member rotatable about an operational axis for imparting rotation to a capper body slidably coupled to the drive member. A helical spring urges the capper body away from the drive member with a biasing force. An adjustment mechanism adjusts the biasing force thereby adjusting the axial force applied to the caps as they are threaded onto the containers. A pair of retaining pins move between a latched position to prevent adjustment of the biasing force and an unlatched position to allow adjustment of the biasing force. The retaining pins are biased in the latched position to prevent inadvertent adjustment of the biasing force during use.