Abstract:
There is provided an organic electronic device having an anode, a hole injection layer, a photoactive layer, an electron transport layer, and a cathode. At least one of the photoactive layer and the electron transport layer includes a compound having Formula I where: R1 is the same or different and can be phenyl, biphenyl, naphthyl, naphthylphenyl, triphenylamino, or carbazolylphenyl; and one of the following conditions is met: (i) R2═R3 and is H, phenyl, biphenyl, naphthyl, naphthylphenyl, arylanthracenyl, phenanthryl, triphenylamino, or carbazolylphenyl; or (ii) R2 is H or phenyl; and R3 is phenyl, biphenyl, naphthyl, naphthylphenyl, arylanthracenyl, phenanthryl, triphenylamino, and carbazolylphenyl; When both R1 are phenyl, R2 and R3 can be 2-naphthyl, naphthylphenyl, arylanthracenyl, 9-phenanthryl, triphenylamino, or m-carbazolylphenyl.
Abstract:
An object is to provide a technique that can enhance the binding properties of a single-stranded polynucleotide comprising a palindromic structure comprising an acyclic polynucleotide structural unit to target polynucleotides, such as miRNA, while suppressing self-duplex formation of the single-stranded polynucleotide. This object is achieved by a single-stranded polynucleotide comprising a palindromic structure comprising an acyclic polynucleotide structural unit, wherein adenine in the palindromic structure is replaced by diaminopurine, and thymine at a position complementary to the adenine is replaced by a thiouracil derivative.
Abstract:
There is provided an organic electronic device having an anode, a hole injection layer, a photoactive layer, an electron transport layer, and a cathode. At least one of the photoactive layer and the electron transport layer includes a compound having Formula I where: R1 is the same or different and can be phenyl, biphenyl, naphthyl, naphthylphenyl, triphenylamino, or carbazolylphenyl; and one of the following conditions is met: (i) R2=R3 and is H, phenyl, biphenyl, naphthyl, naphthylphenyl, arylanthracenyl, phenanthryl, triphenylamino, or carbazolylphenyl; or (ii) R2 is H or phenyl; and R3 is phenyl, biphenyl, naphthyl, naphthylphenyl, arylanthracenyl, phenanthryl, triphenylamino, and carbazolylphenyl; When both R1 are phenyl, R2 and R3 can be 2-naphthyl, naphthylphenyl, arylanthracenyl, 9-phenanthryl, triphenylamino, or m-carbazolylphenyl.
Abstract:
Catalytic processes for preparing caprolactam, pipecolinic acid, and their derivatives, from lysine or alpha-amino-epsilon-caprolactam starting materials, and products produced thereby. A process for preparing caprolactam or a derivative thereof, the process comprising contacting a reactant comprising lysine or alpha aminocaprolactam with a catalyst and a gas comprising hydrogen gas, in the presence of a solvent. The catalyst may be provided on a support material, such as a transition metal.
Abstract:
There is provided an organic electronic device having an anode, a hole injection layer, a photoactive layer, an electron transport layer, and a cathode. At least one of the photoactive layer and the electron transport layer includes a compound having Formula I where: R1 is the same or different and can be phenyl, biphenyl, naphthyl, naphthylphenyl, triphenylamino, or carbazolylphenyl; and one of the following conditions is met: (i) R2=R3 and is H, phenyl, biphenyl, naphthyl, naphthylphenyl, arylanthracenyl, phenanthryl, triphenylamino, or carbazolylphenyl; or (ii) R2 is H or phenyl; and R3 is phenyl, biphenyl, naphthyl, naphthylphenyl, arylanthracenyl, phenanthryl, triphenylamino, and carbazolylphenyl; When both R1 are phenyl, R2 and R3 can be 2-naphthyl, naphthylphenyl, arylanthracenyl, 9-phenanthryl, triphenylamino, or m-carbazolylphenyl.
Abstract:
Catalytic processes for preparing caprolactam, pipecolinic acid, and their derivatives, from lysine or alpha-amino-epsilon-caprolactam starting materials, and products produced thereby. A process for preparing caprolactam or a derivative thereof, the process comprising contacting a reactant comprising lysine or alpha aminocaprolactam with a catalyst and a gas comprising hydrogen gas, in the presence of a solvent. The catalyst may be provided on a support material, such as a transition metal.
Abstract:
Novel compounds of the structural formula (I), and the pharmaceutically acceptable salts thereof, are agonists of G-protein coupled receptor 40 (GPR40) and may be useful in the treatment, prevention and suppression of diseases mediated by the G-protein-coupled receptor 40. The compounds of the present invention may be useful in the treatment of Type 2 diabetes mellitus, and of conditions that are often associated with this disease, including obesity and lipid disorders, such as mixed or diabetic dyslipidemia, hyperlipidemia, hypercholesterolemia, and hypertriglyceridemia.