Abstract:
Scaffold comprises a polymer defining macropores and comprising hydroxypropylcellulose partially substituted by a substituent comprising a self-crosslinkable group, which is crosslinked through the self-crosslinkable group. The macropores have an average pore size larger than 50 microns and are at least partially interconnected. In one method, bicontinuous emulsion comprising a continuous aqueous phase and a continuous polymer phase is formed. The polymer phase comprises hydroxypropylcellulose partially substituted by a substituent comprising a self-crosslinkable group, and is crosslinked through the self-crosslinkable group to form a polymer defining at least partially interconnected pores. In another method, phase separation is induced in a solution comprising a polymer precursor and water to form a bicontinuous emulsion comprising a continuous polymer phase and a continuous aqueous phase. The polymer precursor comprises a self-crosslinkable group and is crosslinked through the self-crosslinkable group in the emulsion to form a polymer defining at least partially interconnected macropores.
Abstract:
A method of synthesizing aerogels and cross-linked aerogels in a single step and in a single pot without requiring any solvent exchange is described. Porous matrices are synthesized through a modification of hydrolysis condensation of alkoxides in which addition of water is minimized. The reaction occurs in an ethanol-water azeotrope mixture; the water in the azeotrope slowly hydrolyzes the alkoxide. Additionally, after gelation, the porous matrix is dried in supercritical ethanol rather than liquid CO2, which allows for elimination of solvent exchange steps. These modifications allow for the preparation of aerogel monoliths in any size in one step and in one pot and much faster than conventional procedures. In addition, the method provides for custom aerogel parts with large dimensions, as well as high volume fabrication of aerogels. The custom aerogel parts may be used in a variety of thermal insulation applications.
Abstract:
Scaffold comprises a polymer defining macropores and comprising hydroxypropylcellulose partially substituted by a substituent comprising a self-crosslinkable group, which is crosslinked through the self-crosslinkable group. The macropores have an average pore size larger than 50 microns and are at least partially interconnected. In one method, bicontinuous emulsion comprising a continuous aqueous phase and a continuous polymer phase is formed. The polymer phase comprises hydroxypropylcellulose partially substituted by a substituent comprising a self-crosslinkable group, and is crosslinked through the self-crosslinkable group to form a polymer defining at least partially interconnected pores. In another method, phase separation is induced in a solution comprising a polymer precursor and water to form a bicontinuous emulsion comprising a continuous polymer phase and a continuous aqueous phase. The polymer precursor comprises a self-crosslinkable group and is crosslinked through the self-crosslinkable group in the emulsion to form a polymer defining at least partially interconnected macropores.
Abstract:
Scaffold comprises a polymer defining macropores and comprising hydroxypropylcellulose partially substituted by a substituent comprising a self-crosslinkable group, which is crosslinked through the self-crosslinkable group. The macropores have an average pore size larger than 50 microns and are at least partially interconnected. In one method, bicontinuous emulsion comprising a continuous aqueous phase and a continuous polymer phase is formed. The polymer phase comprises hydroxypropylcellulose partially substituted by a substituent comprising a self-crosslinkable group, and is crosslinked through the self-crosslinkable group to form a polymer defining at least partially interconnected pores. In another method, phase separation is induced in a solution comprising a polymer precursor and water to form a bicontinuous emulsion comprising a continuous polymer phase and a continuous aqueous phase. The polymer precursor comprises a self-crosslinkable group and is crosslinked through the self-crosslinkable group in the emulsion to form a polymer defining at least partially interconnected macropores.
Abstract:
Disclosed is a method for making a polymer or copolymer aerogel product by forming an aerogel polymer or copolymer solution in the presence of a polymer or copolymer catalyst and solvent therefor. The aerogel polymer or copolymer solution is drained onto a spinning disk or cup. The solvent is removed under aerogel forming conditions to produce the aerogel fiber web or yarn product.
Abstract:
Scaffold comprises a polymer defining macropores and comprising hydroxypropylcellulose partially substituted by a substituent comprising a self-crosslinkable group, which is crosslinked through the self-crosslinkable group. The macropores have an average pore size larger than 50 microns and are at least partially interconnected. In one method, bicontinuous emulsion comprising a continuous aqueous phase and a continuous polymer phase is formed. The polymer phase comprises hydroxypropylcellulose partially substituted by a substituent comprising a self-crosslinkable group, and is crosslinked through the self-crosslinkable group to form a polymer defining at least partially interconnected pores. In another method, phase separation is induced in a solution comprising a polymer precursor and water to form a bicontinuous emulsion comprising a continuous polymer phase and a continuous aqueous phase. The polymer precursor comprises a self-crosslinkable group and is crosslinked through the self-crosslinkable group in the emulsion to form a polymer defining at least partially interconnected macropores.
Abstract:
Scaffold comprises a polymer defining macropores and comprising hydroxypropylcellulose partially substituted by a substituent comprising a self-crosslinkable group, which is crosslinked through the self-crosslinkable group. The macropores have an average pore size larger than 50 microns and are at least partially interconnected. In one method, bicontinuous emulsion comprising a continuous aqueous phase and a continuous polymer phase is formed. The polymer phase comprises hydroxypropylcellulose partially substituted by a substituent comprising a self-crosslinkable group, and is crosslinked through the self-crosslinkable group to form a polymer defining at least partially interconnected pores. In another method, phase separation is induced in a solution comprising a polymer precursor and water to form a bicontinuous emulsion comprising a continuous polymer phase and a continuous aqueous phase. The polymer precursor comprises a self-crosslinkable group and is crosslinked through the self-crosslinkable group in the emulsion to form a polymer defining at least partially interconnected macropores.
Abstract:
A method of synthesizing aerogels and cross-linked aerogels in a single step and in a single pot without requiring any solvent exchange is described. Porous matrices are synthesized through a modification of hydrolysis condensation of alkoxides in which addition of water is minimized. The reaction occurs in an ethanol-water azeotrope mixture; the water in the azeotrope slowly hydrolyzes the alkoxide. Additionally, after gelation, the porous matrix is dried in supercritical ethanol rather than liquid CO 2 , which allows for elimination of solvent exchange steps. These modifications allow for the preparation of aerogel monoliths in any size in one step and in one pot and much faster than conventional procedures. In addition, the method provides for custom aerogel parts with large dimensions, as well as high volume fabrication of aerogels. The custom aerogel parts may be used in a variety of thermal insulation applications.
Abstract:
Scaffold comprises a polymer defining macropores and comprising hydroxypropylcellulose partially substituted by a substituent comprising a self-crosslinkable group, which is crosslinked through the self-crosslinkable group. The macropores have an average pore size larger than 50 microns and are at least partially interconnected. In one method, bicontinuous emulsion comprising a continuous aqueous phase and a continuous polymer phase is formed. The polymer phase comprises hydroxypropylcellulose partially substituted by a substituent comprising a self-crosslinkable group, and is crosslinked through the self-crosslinkable group to form a polymer defining at least partially interconnected pores. In another method, phase separation is induced in a solution comprising a polymer precursor and water to form a bicontinuous emulsion comprising a continuous polymer phase and a continuous aqueous phase. The polymer precursor comprises a self-crosslinkable group and is crosslinked through the self-crosslinkable group in the emulsion to form a polymer defining at least partially interconnected macropores.
Abstract:
The invention relates to articles of manufacture comprising spongeous matrices which may have a controlled pore size and/or distribution, formed of: Component (a) glucomannan; and Component (b) at least one other aqueous gel-forming polysaccharide; and optionally Component (c) at least one water soluble hydrocolloid other than the foregoing. The invention also relates to processes for fabricating the spongeous matrices and their use as plant culture media, as surgical sponges, and as packaging material.