Abstract:
Lubricating composition comprising fluorine oil and tricalcium phosphate. Preferably the tricalcium phosphate is used at from 1% to 40% by mass relative to the total composition. The lubricating composition of the present invention has excellent heat resistance, load resistance, fire resistance, and a long life at elevated temperatures, without using a fluororesin or the fluorine solvent to dissolve it.
Abstract:
Crystalline aluminates of the formula: I. (LiAx)y.2Al(OH)3.nH2O II. Li(R)v_r.2Al(OH)3.nH2O, or III. Mm(R)v_r.(D)w_z2Al(OH)3.nH2O wherein A is one or more anions and/or negative-valence radicals or mixtures thereof; wherein, in formula I, x is a quantity of A ions or radicals sufficient to substantially satisfy the valence requirements of Li; wherein n is zero or the number of waters of hydration; wherein y is a numerical value at least sufficient to maintain the crystalline structure; wherein R is a monocarboxylic acid or dicarboxylic acid of C6 C22, including those which are OH substituted; wherein r is greater than zero and represents the number of R ions in the molecule; wherein v is the valence of R, being monovalent or divalent; wherein M is divalent Zn or Ca cations; wherein D represents inorganic anions of valence 1-3, represented by w; wherein z is equal to or greater than zero and represents the number of D anions; wherein, in formula II, vr represents an amount of R anions to substantially satisfy the valence requirements of Li; wherein, in formula III, r>z and (vr + wz) represents an amount of combined anions, R and A, to substantially satisfy the valence requirements of M; with m representing the number of divalent M cations and having a numerical value in the range of 1 to 4, are found to improve the coefficient of friction and antiwear properties of lubrication fluids subjected to shearing, rubbing, or grinding forces at elevated pressure. Also, useful compositions are prepared by incorporating into organic materials, crystalline lithium aluminates of formula I.
Abstract:
An overbased calcium sulfonate grease composition comprising a reduced amount of overbased calcium sulfonate, calcium hydroxyapatite, base oil, one or more converting agents, and one or more complexing acids if a complex grease is desired. The calcium sulfonate grease composition improves thickener yield and expected high temperature utility as demonstrated by dropping point. A method of making the composition comprising the steps of mixing the calcium sulfonate and base oil, adding the calcium carbonate either before or after conversion, adding one or more converting agents, and adding one or more complexing acids. All or a portion of one or more of the complexing acids may be added with or prior to the one or more converting agents.
Abstract:
A grease composition for use in resin lubrication wherein at least one amine salt of an unsaturated or saturated fatty acid is incorporated in a grease base material which includes a base oil and a thickener, preferably wherein at least one fatty acid amine salt of the following general formula (1) is incorporated: RCOO−R′NH3′ wherein either (i) R is an unsaturated by hydrocarbon group having from 15 to 21 carbon atoms, and R′ is a saturated or unsaturated linear or branched hydrocarbon group having from 8 to 22 carbon atoms; or (ii) R is a linear saturated hydrocarbon group having from 5 to 21 carbon atoms, and R′ is an unsaturated hydrocarbon group having from 16 to 18 carbon atoms. The grease composition of the- present invention improves the lubricity between resin and resin or resin. and another material such as a metal.
Abstract:
A composition that can be used as lubricant for high electric field including spark plug boots is disclosed. The composition comprises, or is produced by combining, a halogenated oil such as a perfluoropolyether, a polytrichlorofluoroethylene, a fluorosilicone, or combinations of two or more thereof; a basic thickener; and optionally an additional thickener in which the basic thickener is a metal hydroxide, a metal salt, an ammonium salt, or combinations of two or more thereof. The optional additional thickener is polytetrafluoroethylene, talc, silica, clay, boron nitride, metal soaps, titanium dioxide, polydimethylsiloxane, polyurea, polyurethane, or combinations of two or more thereof. Also provided is a spark plug boot that comprises the composition applied thereto.
Abstract:
Elastic solids having reversible stress-induced fluidity are prepared, e.g., by combining liquid formulations with a crystalline mixed metal hydroxide conforming substantially to the formula Li.sub.m D.sub.d T(OH).sub.(m+2d+3+n.multidot.a) (A.sup.n).sub.a .multidot.xH.sub.2 O where m is amount of Li, d is amount of divalent metal D, T is a trivalent metal, A represents at least one anion or negative-valence radical of valence n and a is the amount of A, and xH.sub.2 O represents excess waters of hydration, if any. These make useful coatings. The instantly reversible fluidization of these unique elastic solids may be expressed as: .sigma.=k.sub..alpha. .epsilon. when .epsilon. F, (this equation represents a generalized form for the usual theological equations); for a cycle of .epsilon., -xF