Abstract:
The present invention relates to a cell for producing acyl glycinates wherein the cell is genetically modified to comprise at least a first genetic mutation that increases the expression relative to the wild type cell of an amino acid-N-acyl-transferase, at least a second genetic mutation that increases the expression relative to the wild type cell of an acyl-CoA synthetase, and at least a third genetic mutation that decreases the expression relative to the wild type cell of at least one enzyme selected from the group consisting of an enzyme of the glycine cleavage system, glycine hydroxymethyltransferase (GlyA) and threonine aldolase (LtaE).
Abstract:
The present invention generally relates to the microbiological industry, and specifically to the production of L-serine using genetically modified bacteria. The present invention provides genetically modified microorganisms, such as bacteria, wherein the expression of genes encoding for enzymes involved in the degradation of L-serine is attenuated, such as by inactivation, which makes them particularly suitable for the production of L-serine at higher yield. The present invention also provides means by which the microorganism, and more particularly a bacterium, can be made tolerant towards higher concentrations of serine. The present invention also provides methods for the production of L-serine or L-serine derivative using such genetically modified microorganisms.
Abstract:
The present invention relates to a vitamin B6-coupled poly(ester amine) (VBPEA) as a gene carrier and a method for preparing the gene carrier. Moreover, the present invention relates to a gene delivery complex comprising a therapeutic gene coupled to the gene carrier and a pharmaceutical formulation for gene therapy, which comprises the gene delivery complex as an active ingredient. In addition, the present invention relates to gene therapy utilizing the gene carrier, the gene delivery complex or the pharmaceutical formulation. The VBPEA of the invention has a significantly high gene delivery rate compared to existing gene carriers and a complex of the VBPEA with DNA has little or no cytotoxicity and shows a very high in vivo transfection efficiency. In addition, a complex of the VBPEA with siRNA shows high gene silencing efficiency and can induce a high rate of cell death and the inhibition of cell proliferation in cancer cells, suggesting that it can be used for anticancer gene therapy. Thus, the gene carrier VBPEA of the invention can be used as an experimental gene carrier and can also be widely used in gene therapy against various diseases depending on the kind of therapeutic gene.
Abstract:
The present invention provides a new method for producing serine derivatives and their optically-activated derivatives in a convenient manner. In the presence of an enzyme, an L-α-amino acid of formula (I): (in the formula (I), R1 is a hydrocarbon group) is reacted with an aldehyde of formula (II): (in the formula (II), R2 is a hydrocarbon) to produce an L-serine derivative of formula (III).
Abstract:
Methods of producing peptide beta-lactones and beta-hydroxy acids are disclosed that include contacting a beta-hydroxy-alpha-amino acid, an aryl carrier protein (ObiD), and ATP with a non-ribosomal protein synthetase. A continuous flow reactor is disclosed that includes an elongate conduit with at least one region that includes a first region with a non-ribosomal protein synthetase immobilized to a substrate. The non-ribosomal protein synthetase of the continuous flow reactor is configured to contact a flow of a reaction mixture that includes a beta-hydroxy-alpha-amino acid and an aryl carrier protein. The non-ribosomal protein synthetase is further configured to release a peptide beta-lactone into the flow of the reaction mixture.
Abstract:
The present invention relates to a vitamin B6-coupled poly(ester amine) (VBPEA) as a gene carrier and a method for preparing the gene carrier. Moreover, the present invention relates to a gene delivery complex comprising a therapeutic gene coupled to the gene carrier and a pharmaceutical formulation for gene therapy, which comprises the gene delivery complex as an active ingredient. In addition, the present invention relates to gene therapy utilizing the gene carrier, the gene delivery complex or the pharmaceutical formulation. The VBPEA of the invention has a significantly high gene delivery rate compared to existing gene carriers and a complex of the VBPEA with DNA has little or no cytotoxicity and shows a very high in vivo transfection efficiency. In addition, a complex of the VBPEA with siRNA shows high gene silencing efficiency and can induce a high rate of cell death and the inhibition of cell proliferation in cancer cells, suggesting that it can be used for anticancer gene therapy. Thus, the gene carrier VBPEA of the invention can be used as an experimental gene carrier and can also be widely used in gene therapy against various diseases depending on the kind of therapeutic gene.
Abstract:
Compositions for a phage particle are disclosed. The phage particle is non-replicating and includes at least one heterologous nucleic acid sequence that is capable of being expressed in a target bacteria. The expressed heterologous nucleic acid sequence is non-lethal to the target bacteria.
Abstract:
The present invention relates to a secretagogue compound derived from oxalate degrading bacteria, for use in the treatment of an oxalate related disease and/or oxalate related imbalance in a subject, wherein the administration of the secretagogue results in a reduction of urinary oxalate and/or plasma oxalate in the subject. The invention further relates to a pharmaceutical composition comprising such a secretagogue compound, a method for treating a subject suffering from an oxalate related disease, and to a method for preparing a secretagogue.
Abstract:
The present invention generally relates to the microbiological industry, and specifically to the production of L-serine using genetically modified bacteria. The present invention provides genetically modified microorganisms, such as bacteria, wherein the expression of genes encoding for enzymes involved in the degradation of L-serine is attenuated, such as by inactivation, which makes them particularly suitable for the production of L-serine at higher yield. The present invention also provides means by which the microorganism, and more particularly a bacterium, can be made tolerant towards higher concentrations of serine. The present invention also provides methods for the production of L-serine or L-serine derivative using such genetically modified microorganisms.