Abstract:
In a pressure-diecast light-alloy piston for internal combustion engines, which piston comprises shaped fibrous bodies which are partly embedded in at least one of the piston head, ring zone, piston pin bosses and skirt of the piston, which bodies comprise short ceramic fibers, lying in a common plane and in said plane having a random orientation, the improvement wherein the piston (1) is made of a high-temperature magnesium alloy, the piston skirt at least on its sliding surfaces has a chemically applied or electrodeposited metallic sliding layer (3) which has a thickness of about 10 to 30 .mu.m and a hardness of about 740 to 850 HV.sub.0.01, and the inside surface of the piston is coated with a thin plastic paint layer (2) or an anodized magnesium oxide layer.
Abstract:
A method and apparatus for insulating the exhaust passage of an internal combustion engine is disclosed. A three-zone liner assembly is provided with an outer zone comprised of a room temperature vulcanizing silicone sleeve, an inner zone comprised of a stamped and seam welded high strength Al-Cr-steel alloy, and an intermediate zone consisting of a ceramic wool mat. The liner assembly is supported or enclosed within a mild carbon sheet metal sleeve which in turn may be bonded to the engine passage wall by use of a room-temperature-vulcanized silicone if of the insert type, or by fusion bonding during casting if of the cast-in-place type.
Abstract:
A wall member is on its side facing a combustion chamber provided with a hot-corrosion-resistant material made from a particulate starting material of an alloy containing nickel and chromium which by a HIP process has been unified to a coherent material substantially without melting the starting material. In terms of percent by weight the corrosion-resistant material comprises from 38 to 75% Cr, at the most 0.15% C, at the most 1.5% Si, at the most 1.0% Mn, at the most 0.2% B, at the most 5.0% Fe, at the most 1.0% Mg, at the most 2.5% Al, at the most 2.0% Ti, at the most 8.0% Co, at the most 3.0% Nb and a balance of Ni, the aggregate contents of Al and Ti amounting at the most to 4.0%, and the aggregate contents of Fe and Co amounting at the most to 8.0%, and the aggregate contents of Ni and Co amounting at the least to 25%. The corrosion-resistant material has a hardness of less than 310 HV measured at approximately 20° C. after the material has been heated to a temperature within the range of 550-850° C. for more than 400 hours.
Abstract:
Disclosed is a method of operating a catalytic ignition internal combustion engine wherein the fuel is injected into a combustion chamber at a time near maximum compression such that at least part of the fuel impinges upon an oxidation catalyst surface comprising a portion of the wall of said combustion chamber, said catalytic surface being insulated from the surroundings external to the combustion chamber by a low thermal conductivity material, said catalytic surface preferably comprising platinum. Also disclosed are combustion chambers constructed specially for the use of this method and the methods of constructing them.
Abstract:
Combustion chamber defining components such as cylinder liners in internal combustion engines are composed of a plurality of metal oxides which combine to impart good wear resistance and thermally insulative characteristics.
Abstract:
A method and apparatus for insulating the exhaust passage of an internal combustion engine is disclosed. A three-zone liner assembly is provided with an outer zone comprised of a room temperature vulcanizing silicone sleeve, an inner zone comprised of a stamped and seam welded high strength Al-Cr-steel alloy, and an intermediate zone consisting of a ceramic wool mat. The liner assembly is supported or enclosed within a mild carbon sheet metal sleeve which in turn may be bonded to the engine passage wall by use of a room-temperature-vulcanized silicone if of the insert type, or by fusion bonding during casting if of the cast-in-place type.
Abstract:
A heat resistant member includes a metal or ceramic substrate and a thermal-barrier coating layer disposed on the substrate. The thermal-barrier coating layer includes a metal layer functioning as a bonding layer and one or more ceramic layers disposed on the metal layer. At least one of the ceramic layers is mainly composed of a hafnium oxide-based ceramic layer containing 85% or more of hafnium oxide. Due to the above structure, there can be provided a heat resistant member with high heat resistance and durability which has a thermal-barrier coating layer with stable thermal conductivity at elevated temperatures, namely, not less than 1,200° C., and resistance to cracking and delamination due to sintering.
Abstract:
Articles for use in a high temperature environment, and methods for protecting articles in such environments, are provided. The article comprises a substrate comprising silicon; a bondcoat comprising silicon, disposed over the substrate; an intermediate barrier disposed over the bondcoat, the barrier comprising at least one layer, wherein the at least one layer comprises a rare-earth silicate and is substantially free of mullite; and a topcoat disposed over the intermediate barrier, the topcoat comprising a rare-earth monosilicate. The method comprises providing a substrate, the substrate comprising silicon; disposing a bondcoat comprising silicon over the substrate; disposing an intermediate barrier over the bondcoat, the barrier comprising at least one layer, wherein the at least one layer comprises a rare-earth silicate and is substantially free of mullite; and disposing a topcoat over the intermediate barrier, the topcoat comprising a rare-earth monosilicate.
Abstract:
A thermal barrier and wear coating having high strength, low conductivity, a low thermal expansion coefficient and good adhesion qualities, where the wear coating is self-lubricating and has high temperature resistance, a hard wear resistant matrix, a low coefficient of friction and is easy to machine to a smooth surface. The thermal barrier is applied to the internal engine cylinder surface to reduce the heat rejection and thus reduce the need for air or liquid cooling. The self-lubricating wear coating is applied over the thermal barrier to prevent contact between the moving engine parts and the thermal barrier. The wear coating has a low friction coefficient so that it does not generate substantial additional heat and is self-lubricating to withstand temperatures up to 900.degree. C.
Abstract:
Operation of in-cylinder fuel injected internal combustion engines is improved by use of exhaust valves having an effective ignition catalyt on the valve face. In operation of the engine, fuel is injected into air and ignited by contact with the valve face prior to top dead center.