Abstract:
A sample (26) is illuminated by laser light and the resulting Raman spectrum (62) is dispersed at a high spectral resolution along one or more rows or columns of detector elements (60) of a CCD (34). The resulting charge is shifted in a direction Y' and binned in an output register 64 of the CCD. The dispersed spectrum is moved along the rows or columns in a direction X', synchronously with the shifting of charge in the output register (arrow 72). Thus, data from a given wavenumber in the spectrum continues to accumulate in the output register during the movement. This enables data from a wide spectrum to be collected at high resolution, without the need to subsequently stitch blocks of data together in a computer, even where the CCD is arranged such that row-by-row transfer of charge towards the output register is orthogonal to the direction of dispersion.
Abstract:
An optical spectrum analyzer (FIG. 2) is provided with a user selectable sensitivity (160). Required operating parameters (172, 174, 176) are set in response to user selection of sensitivity (162) to permit measurement of an input light beam (12) at the selected sensitivity (160). Setting the required parameters (172, 174, 176) includes setting a required gain (172) of a video channel (48, 90, 92, 94, 96) to permit measurement of a specified maximum input signal and to provide the selected sensitivity (160), setting a required video bandwidth (174) of the video channel (48, 90, 92, 94, 96) to provide the selected sensitivity (160) at the required gain (172) of the video channel (48, 90, 92, 94, 96) and setting a sweep rate (176) to provide the selected sensitivity (160) at the required video bandwidth (174). When the normal bandwidth of the video channel (48, 90, 92, 94, 96) is not adequate to provide the selected sensitivity (160), the electrical signal is passed through a digital filter (100) having a filter coefficient (FILTER COEFFICIENT) set to provide the required video bandwidth (174). A peak detector (90) is incorporated in the video channel (48, 90, 92, 94, 96) to accurately measure signal amplitudes in a fast scanning condition.
Abstract:
An optical spectrum analyzer (FIG. 2) is provided with a user selectable sensitivity (160). Required operating parameters are set in response to user selection of sensitivity (162) to permit measurement of an input light beam (12) at the selected sensitivity. Setting the required parameters includes setting a required gain of a video channel (48, 90, 92, 94, 96) to permit measurement of a specified maximum input signal and to provide the selected sensitivity, setting a required video bandwidth of the video channel (48, 90, 92, 94, 96) to provide the selected sensitivity at the required gain of the video channel (48, 90, 92, 94, 96) and setting a sweep rate to provide the selected sensitivity at the required video bandwidth. When the normal bandwidth of the video channel (48, 90, 92, 94, 96) is not adequate to provide the selected sensitivity, the electrical signal is passed through a digital filter having a filter coefficient (FILTER COEFFICIENT) set to provide the required video bandwidth. A peak detector (90) is incorporated in the video channel (48, 90, 92, 94, 96) to accurately measure signal amplitudes in a fast scanning condition.
Abstract:
L'invention concerne une installation de spectrométrie comportant une entrée (Fe); des moyens de filtrage optique (MF) recevant un faisceau d'entrée (ON) et délivrant une image spectrale dispersée de ce faisceau, limitée à une bande spectrale (BZ) choisie; un module de détection (DM) multicanale recevant ladite image spectrale et des moyens de traitement (UT). Selon l'invention, les moyens de filtrage optique (MF) sont munis d'un étage déflecteur (DF). Aux moyens de filtrage optique sont associés des moyens de commande (AJ1), pour définir la bande spectrale, en fréquence centrale et en largeur, et des moyens de commande (AJ2), propres à déplacer l'image spectrale sur le module de détection (DM). Il est prévu une unité de commande électronique (UCE) pilotant les moyens de commande (AJ1) (AJ2) et les moyens de traitement (UT) selon une pluralité de modes de fonctionnement, dont chacun comprend une commande conjointe de la bande spectrale choisie, du déplacement de l'image spectrale, et des moyens de traitement, pour utiliser sélectivement un jeu particulier d'éléments détecteurs.
Abstract:
A sample (26) is illuminated by laser light and the resulting Raman spectrum (62) is dispersed at a high spectral resolution along one or more rows or columns of detector elements (60) of a CCD (34). The resulting charge is shifted in a direction Y' and binned in an output register 64 of the CCD. The dispersed spectrum is moved along the rows or columns in a direction X', synchronously with the shifting of charge in the output register (arrow 72). Thus, data from a given wavenumber in the spectrum continues to accumulate in the output register during the movement. This enables data from a wide spectrum to be collected at high resolution, without the need to subsequently stitch blocks of data together in a computer, even where the CCD is arranged such that row-by-row transfer of charge towards the output register is orthogonal to the direction of dispersion.