Abstract:
A fire sensing system, a process for sensing a fire and an environment monitor are disclosed. The system includes infrared sensors with sensing wavelength bands sensing an infrared radiation from an infrared source. One of the sensing wavelength bands is a CO.sub.2 -molecular resonance radiation wavelength band. The system determines whether a disastrous fire occurs or not on the basis of outputs of the sensors and a change in a ratio of the outputs. The process computes the temperature of the infrared source from a ratio of outputs of infrared sensors with at least two sensing wavelength bands of an infrared radiation from a monitored area, produces the intensity of infrared radiation of either of the bands from the computed temperature and computes a heating area from the intensity and the output of a corresponding infrared sensor. The process determines the progress of a fire. The monitor produces a control signal to an air conditioner or room heater-and-cooler from outputs of sensors and an output of a thermometer.
Abstract:
An optical system to permit two detectors to see the same field of view includes an angle converting cone, for mixing radiation from a field of view so that it can be applied to two detectors, and a lens for focusing the radiation onto the cone.
Abstract:
A wavelength discriminator designed to collect broadband, multiple wavelength input energy, to isolate specific narrow bands of interest, and to image such narrow bands of interest upon closely spaced, separate detectors. This discriminator comprises optical devices (22, 18) for directing incoming radiant energy of a certain quality and involving a wide range of wavelengths through first (26a) and second (26b) wavelength selective reflectors separated by a medium that transmits the wavelengths of interest. The wavelength selective reflectors in accordance with this invention are in a non-parallel configuration and disposed in a double pass geometrical arrangement wherein energy of a certain wavelength reflected from the second wavelength selective reflector (26b) passes back through the first wavelength selective reflector (26a), with the energy from the first and second wavelength reflectors thereafter being directed onto respective detectors (32a and 32b). An embodiment involving a third wavelength selective reflector (26c) grouped with the first and second reflectors may be utilized, wherein energy of a different wavelength reflected from the third wavelength selective reflector passes back through both the second and first wavelength selective reflectors, with the selected wavelengths thereafter falling upon three separate detectors (32a, 32b and 32c) of the array.
Abstract:
Un discriminateur de longueurs d'ondes capte de l'énergie à large bande et à longueurs d'ondes multiples, isole des bandes étroites spécifiques d'intérêt et projette une image de ces bandes étroites d'intérêt sur des détecteurs séparés très rapprochés. Le discriminateur comprend des dispositifs optiques (22, 18) de guidage d'une certaine qualité d'énergie rayonnante qu'il reçoit et ayant une large bande de longueurs d'ondes à travers un premier (26a) et un deuxième (26b) réflecteur sélectif de longueurs d'ondes séparés par un milieu qui transmet les longueurs d'ondes d'intérêt. Les réflecteurs sélectifs de longueurs d'ondes sont disposés selon un agencement géométrique non-parallèle et à double passage, de sorte qu l'énergie ayant une certaine longueur d'ondes réfléchie par le deuxième réflecteur sélectif de longueurs d'ondes (26b) traverse à nouveau le premier réflecteur sélectif (26a), l'énergie réfléchie par les premier et deuxième réflecteurs étant ensuite dirigée vers des détecteurs respectifs (32a et 32b). On peut aussi utiliser un autre mode de réalisation dans lequel un troisième réflecteur sélectif de longueurs d'ondes (26c) est ajouté aux deux autres réflecteurs; l'énergie ayant une longueur d'ondes différente réfléchie par le troisième réflecteur sélectif traverse à nouveau les premier et deuxième réflecteurs sélectifs, et les longueurs d'ondes sélectionnées tombent ensuite sur trois détecteurs séparés (32a, 32b et 32c) de l'agencement.
Abstract:
Die Erfindung betrifft einen Multispektralsensor mit mehreren Filtern (36) und Sensorelementen (38) für unterschiedliche Spektralbereiche einer zu messenden Strahlung (18). Die Aufgabe der Erfindung besteht darin, einen Multispektralsensor dieser Art dahingehend auszubilden, daß er als diskretes Bauteil mit geringen Abmessungen hergestellt werden kann und eine hohe Meßgenauigkeit unter Erzielung eines hohen Ausgangssignals aufweist. Diese Aufgabe wird dadurch gelöst, daß der Strahl durch eine optische Einrichtung (34) in mehrere Teilstrahlen zerlegt und auf Filter (38) reflektiert wird. Hinter den Filtern sind strahlungsempfindliche Elemente angeordnet, die den dem Transmissionsbereich des jeweils vorgeschalteten Filters entsprechenden Spektralbereich detektieren. Der restliche spektrale Bereich des Teilstrahls wird von der Filterfläche in Richtung auf die anderen Filter reflektiert. Hierdurch wird erreicht, daß jedem Filter die zugehörigen Spektralbereiche aller Teilstrahlen zugeführt werden.
Abstract:
Die vorliegende Erfindung betrifft ein Pyrometer, welches insbesondere auch hochtransiente Temperaturvorgänge sehr genau erfassen kann. Das Gerät arbeitet nach dem Prinzip der Verhältnispyrometer, verwendet jedoch keine optischen Filter, sondern fotoelektrische Elemente (8a, 9a) unterschiedlicher spektraler Empfindlichkeiten, vorzugsweise Foto-PIN-Dioden oder Foto-Avalanche-Dioden mit kurzen Ansprechzeiten. Durch nicht der Strahlung ausgesetzte gleichartige Referenzelemente (8b, 9b), die sich in Wärmekontakt mit den Meßelementen (8a, 9a) befinden, werden die thermischen Dunkelströme kompensiert. Bei Verwendung von infrarotdurchlässigen Optiken (2, 3, 4, 5, 6, 7) und Fotodioden mit Empfindlichkeiten bei 0,8 bzw. 1,6 µm Wellenlänge, kann das Pyrometer schnelle und genaue Messungen bis etwa 2500 °C durchführen.
Abstract translation:该高温计还可以高精度地特别检测高度瞬态的温度过程。 该装置根据比例高温计的原理操作,但不使用具有不同光谱灵敏度的光电元件(8a,9a),优选地具有短响应时间的PIN光电二极管或光电二极管的光学元件(8a,9a)。 热暗电流由不暴露于辐射并与感测元件(8a,9a)热接触的相似参考元件(8b,9b)补偿。 当使用光学器件(2,3,4,5,6,7)对红外线透明并且在波长为0.8和1.6μm时具有灵敏度的光电二极管时,高温计能够进行高达约2500°的快速和准确的测量 C.
Abstract:
A wavelength discriminator designed to collect broadband, multiple wavelength input energy, to isolate specific narrow bands of interest, and to image such narrow bands of interest upon closely spaced, separate detectors. This discriminator comprises optical devices (22, 18) for directing incoming radiant energy of a certain quality and involving a wide range of wavelengths through first (26a) and second (26b) wavelength selective reflectors separated by a medium that transmits the wavelengths of interest. The wavelength selective reflectors in accordance with this invention are in a non-parallel configuration and disposed in a double pass geometrical arrangement wherein energy of a certain wavelength reflected from the second wavelength selective reflector (26b) passes back through the first wavelength selective reflector (26a), with the energy from the first and second wavelength reflectors thereafter being directed onto respective detectors (32a and 32b). An embodiment involving a third wavelength selective reflector (26c) grouped with the first and second reflectors may be utilized, wherein energy of a different wavelength reflected from the third wavelength selective reflector passes back through both the second and first wavelength selective reflectors, with the selected wavelengths thereafter falling upon three separate detectors (32a, 32b and 32c) of the array.