Abstract:
A first tunable wavelength pulse light source (22) is driven by a reference signal to emit a first optical pulse. An optical demultiplexer (24) demultiplexes a first optical pulse emitted from the first pulse light source (22) into a reference optical pulse and an incident optical pulse to be sent into an object to be measured. An optical multiplexer (26) multiplexes the reference optical pulse and an outgoing optical pulse passing through the object to output multiplexed light. A second pulse light source (23) generates a second optical pulse which is synchronous with the first optical pulse and delays a predetermined time for each period of the first optical pulse. A sampling unit (27, 27a, 27b) receives the multiplexed light and the second optical pulse to obtain an optical pulse train signal proportional to the intensity of the multiplexed light obtained in synchronism with the second optical pulse. From the optical pulse train signal from the sampling unit (27, 27a, 27b), a signal processor (37) obtains an envelope formed by peaks of individual optical pulses forming the optical pulse train. The wavelength dispersion of the object is obtained by measuring the delay time of the outgoing optical pulse passing through the object on the basis of intervals between the peaks of the envelope.
Abstract:
A delay time measurement apparatus for an optical element includes a pulse light source (42), wavelength setting unit (41), optical power divider (44), optical delay unit (48), controller (52), and detector (46, 53). The pulse light source (42) can vary the wavelength of light to be output, and outputs an optical pulse having a predetermined repetition period. The wavelength setting unit (42) sets the wavelength of light to be output from the pulse light source. The optical power divider (44) divides the optical pulse output from the pulse light source into a first optical pulse and a second optical pulse to be input to an optical element as the object to be measured. The optical delay unit (48) can vary the spatial optical path length along which the first optical pulse divided by the optical power divider travels. The controller (52) changes the spatial optical path length of the optical delay unit. The detector (46, 53) receives a measurement optical pulse output from the optical element as the object to be measured, and a reference optical pulse output from the optical delay unit, and detects the delay time of light that has passed through the optical element as the object to be measured from a change in spatial optical path length required for superposing the measurement and reference optical pulses on each other.
Abstract:
A probe including reflector is disclosed to measure the velocity distribution of a moving surface along many lines of sight. Laser light, directed to the surface by the probe and then reflected back from the surface, is Doppler shifted by the moving surface, collected into probe, and then directed to detection equipment through optic fibers. The received light is mixed with reference laser light and using photonic Doppler velocimetry, a continuous time record of the surface movement is obtained. An array of single-mode optical fibers provides an optic signal to one or more lens groups and a reflector, such as a parabolic reflector having a mirrored interior surface.
Abstract:
A probe including reflector is disclosed to measure the velocity distribution of a moving surface along many lines of sight. Laser light, directed to the surface by the probe and then reflected back from the surface, is Doppler shifted by the moving surface, collected into probe, and then directed to detection equipment through optic fibers. The received light is mixed with reference laser light and using photonic Doppler velocimetry, a continuous time record of the surface movement is obtained. An array of single-mode optical fibers provides an optic signal to one or more lens groups and a reflector, such as a parabolic reflector having a mirrored interior surface.
Abstract:
Some embodiments include a method of operating a tunable light module. The method can include driving a lamp in the tunable light module, having lamps of at least two colors, to produce a colored light according to the color mixing plan that corresponds to a correlated color temperature (CCT); measuring a light characteristic of the lamp using a light sensor; detecting a degradation level by comparing the measured light characteristic against an expected light characteristic; and adjusting a current level for driving the lamp at the CCT by referencing the color mixing plan and an alternative coefficient corresponding to the degradation level.
Abstract:
A probe including a multiple lens array is disclosed to measure velocity distribution of a moving surface along many lines of sight. Laser light, directed to the moving surface is reflected back from the surface and is Doppler shifted, collected into the array, and then directed to detection equipment through optic fibers. The received light is mixed with reference laser light and using photonic Doppler velocimetry, a continuous time record of the surface movement is obtained. An array of single-mode optical fibers provides an optic signal to the multiple lens array. Numerous fibers in a fiber array project numerous rays to establish many measurement points at numerous different locations. One or more lens groups may be replaced with imaging lenses so a stereo image of the moving surface can be recorded. Imaging a portion of the surface during initial travel can determine whether the surface is breaking up.
Abstract:
A device, system and method for measuring the inverse fine structure constant using cosmic compass technology to provide sidereal group and phase velocities is presented. The measured daily oscillation of the phase velocity can then be utilized to measure the inverse fine structure constant. A system and method for detecting the cosmic microwave background Doppler redshift direction is also provided as cosmic compass technology as well as a device which can be utilized as a calendar and/or a clock.
Abstract:
A device, system and method for measuring the one-way velocity of light using selective transmission technology to provide a superluminal energy flow is provided. The superluminal transmitter comprises a transmission source, a receiver, and a selective-transmission device for receiving the transmission wavepacket from the transmission source and selectively transmitting the high-energy or wavefront component of the transmission wavepacket through a barrier such that the energy transmission tunnels through the barrier at superluminal velocities. The measured daily oscillation of the tunnel time can then be utilized to measure the one way light velocity. A system and method for measuring the vector velocity of light using the superluminal transmitter system of the invention is also provided as well as a method of calibrating temporal data and a device which can be utilized as a speedometer, a compass, a calender and/or a clock.
Abstract:
A first tunable wavelength pulse light source is driven by a reference signal to emit a first optical pulse. An optical demultiplexer demultiplexes a first optical pulse emitted from the first pulse light source into a reference optical pulse and an incident optical pulse to be sent into an object to be measured. An optical multiplexer multiplexes the reference optical pulse and an outgoing optical pulse passing through the object to output multiplexed light. A second pulse light source generates a second optical pulse which is synchronous with the first optical pulse and delays a predetermined time for each period of the first optical pulse. A sampling unit receives the multiplexed light and the second optical pulse to obtain an optical pulse train signal proportional to the intensity of the multiplexed light obtained in synchronism with the second optical pulse. From the optical pulse train signal from the sampling unit, a signal processor obtains an envelope formed by peaks of individual optical pulses forming the optical pulse train. The wavelength dispersion of the object is obtained by measuring the delay time of the outgoing optical pulse passing through the object on the basis of intervals between the peaks of the envelope.