Abstract:
The method for determining the presence of a molecule having a Raman resonance generally comprises illuminating a sample with a first radiation beam, the first radiation beam having a first excitation wavelength being tuned to a Raman resonance of the molecule; receiving a first return signal from the sample following illumination of the sample with the first radiation beam; measuring a first intensity of the first return signal using an intensity detector; illuminating the sample with a second radiation beam, the second radiation beam lacking the first excitation wavelength and having a second excitation wavelength being different from the first excitation wavelength; receiving a second return signal from the sample following illumination of the sample with the second radiation beam; measuring a second intensity of the second return signal using an intensity detector; and determining the presence of the molecule in the sample based on the first and second intensities.
Abstract:
Methods, systems and computer program products for detecting gas leaks using a drone are provided. Aspects include capturing a first set of data regarding a presence of a gas in the geographic area while flying along the initial flight path. Aspects also include creating secondary flight paths through regions in the geographic area in which the presence of the gas exceeds a threshold amount and capturing a second set of data regarding a concentration of the gas in the one or more regions while flying along the secondary flight paths. Aspects further include capturing wind data while flying along the initial and second flight paths and creating a three-dimensional gas plume model for gas leaks identified in the geographic area based on the first set of data, the second set of data and the wind data, wherein the three-dimensional gas plume model identifies a source of the gas leaks.
Abstract:
A method of processing a remotely sensed multispectral or hyperspectral image captured in respect of an area of interest including a body of water so as to identify a submerged target, the method comprising obtaining (206), from hydrographic LiDAR measurements, data representative of water depth in respect of said body of water in said area of interest, performing (210) geo-rectification in respect of said hyperspectral image and said water depth data, applying a hydrologic radiative analysis process (211) to said multispectral or hyperspectral image so as to calculate, using said water depth data obtained from said hydrographic LiDAR measurements, data representative of (i) scattered solar radiation and (ii) spectral transmission between a surface of said body of water and a submerged target and subtracting (212) data representative of said scattered solar radiation from said multispectral or hyper spectral image and multiplying a resultant image by data representative of said spectral transmission so as to recover a spectral signature representative of said submerged target.
Abstract:
A method of detecting natural gas releases that includes the step of traversing a target area with a gas-filter correlation radiometer having a field of view oriented towards the target area. The gas-filter correlation radiometer receives reflected radiation in a passband from the target area and produces gas-filter correlation radiometer signals from the received reflected radiation. A surface reflectivity spectral profile of the target area is determined. The presence of methane in the target area is then determined based upon the received reflected radiation and the surface reflectivity spectral profile of the target area.
Abstract:
Methods and systems for detecting oil proximate to a body of ice is disclosed herein. An example system includes an energy emitter disposed proximate to a first surface of a body of ice. An energy detector is disposed proximate to a second surface of the body of ice. The energy detector is used to map a distribution of oil proximate to the body of ice based, at least in part, on differences in energy transmitted through the body of ice.
Abstract:
Apparatus for detecting an anomaly, (e.g. the presence of a hydrocarbon seep) at or near a water or land surface comprises means for generating a beam, preferably a pulsed beam, of primary light radiation, preferably ultra-violet light, and directing the beam towards the surface. The beam is sufficiently intense and of such a spectral composition that the beam causes the anomaly, if present, to emit secondary light radiation. The apparatus also comprises means for collecting the secondary light radiation, or means for collecting solar induced secondary light radiation, spectral analysis means for analysing the spectrum of the secondary radiation, and a high resolution, multi-element digitizing detector for recovering the analyzed secondary radiation. The detector has a plurality of detection channels positioned across the spectrum of the backscattered primary radiation and emitted secondary radiation, the channels being software configurable and under the control of a digitally addressable computer-operated controller. The concentration of used channels across the plurality of channels is adjustable and increasable in the regions of the spectrum of greatest interest and decreasable in the regions of least interest.
Abstract:
A gas detection apparatus mountable to an unmanned aerial vehicle (UAV) comprises a transceiver module, a reflector module and an electronics module. The transceiver module comprises a laser emitter and a laser receiver; the laser emitter is tunable to emit a laser spectroscopy beam that can detect at least one target gas, and the laser receiver is configured to convert the laser spectroscopy beam into absorption spectroscopy measurement data. The reflector module comprises a reflective surface capable of reflecting the laser spectroscopy beam emitted by the laser emitter to the laser receiver. The transceiver and reflector modules are mountable on parts of the UAV such that the transceiver and reflector modules are spaced apart and the laser emitter and laser receiver have an unimpeded line of sight with the reflecting surface. The electronics module is communicative with the transceiver module and with a flight computer of the UAV, and comprises a gas detection program that determines a concentration of the target gas from the measurement data received from the transceiver module; when the determined concentration of the target gas meets or exceeds an alarm threshold, the program records the received measurement data and instructs the flight computer to execute a defined flight plan for the UAV.
Abstract:
Provided is a nondestructive inspection ("NDI") system that includes an unmanned aerial vehicle ("UAV") comprising a body structure, the body structure comprising one or more support structures where each of the one or more support structures comprise a releasable end structure; and one or more NDI sensors integrated to a respective releasable end structure. The NDI system can also include a location tracking system that can determine a position, an orientation, or both of the UAV and/or one or more NDI sensors relative to a structure being inspected.
Abstract:
The unmanned flying body is provided with a gas detector, a distance meter, and an altitude controller. The gas detector emits diagonally downward to the forward side in a moving direction of the unmanned flying body a detecting light frequency-modulated by a predetermined modulation frequency setting a predetermined frequency as a central frequency. The gas detector receives the light, returned from a measurement target to which the detecting light is emitted (an area on a pipe member for transferring gas, irradiated with the detecting light), as first light. The measurement target is checked for gas leakage based on the received first light. The distance meter measures the distance between the gas detector and the measurement target. The altitude controller controls the flight altitude of the unmanned flying body based on the measured distance.