Abstract:
There is disclosed a device capable of continuously measuring the presence and concentration of an analyte or analytes and a method for using said device in a liquid and/or a gas phase reaction volume. The inventive device comprises a sensor probe, a reservoir, and a detection means. The inventive device delivers reagent to the sensor probe in a flow method to directly and continuously renew reagent, thereby allowing the continuous measurement of the presence and the concentration of an analyte or analytes.
Abstract:
The invention relates to a device (1) and a method for measuring the moisture in die cast molds (24), the cavity (25) of which is connected via an evacuation conduit (31) to an evacuation device (28). The modular assembly of the device (1) is connectable to the evacuation conduit (31) and comprises a sensor assembly (S) by means of which the moisture of gases evacuated from the mold cavity (25) is measurable. The sensor assembly (S) comprises an emitter (7) emitting electromagnetic radiation and a detector (14) detecting electromagnetic radiation. On the basis of the measured values obtained during the evacuation action it can be determined whether the amount of a water/release agent mixture jetted into the mold cavity (25) needs to be altered before the actual casting action.
Abstract:
Disclosed is a method of generating a correction function for a light-emitting diode (LED) testing process. The method comprises the steps of: detecting light emitted by a reference LED and reflected from one or more inactive LEDs on a panel within a field of view of a detector, a number of said inactive LEDs within the field of view being varied such that uncorrected values of at least one optical parameter are derivable as a function of the number of inactive LEDs in the field of view; detecting light emitted by the reference LED, or by an active LED having identical optical properties to the reference LED, in the absence of any other LEDs, to determine at least one reference value for the or each said optical parameter; and calculating differences between the uncorrected values and the or each reference value to generate the correction function, the correction function being based on the number of inactive LEDs which are arranged within the field of view of the detector when the detector detects light emitted by an LED under test.
Abstract:
A produce recognition method which determines an optimal number of candidate identifications in a candidate identification list. The method includes the steps of obtaining produce data associated with a produce item, determining distances between the produce data and reference produce data, determining confidence values from the distances, determining first confidence values which are greater than a threshold confidence value, displaying candidate identifications associated with the first confidence values, and recording an operator choice of one of the candidate identifications.
Abstract:
Due to the size of the devices used for the excitation and measuring of light, conventional sensor elements for optically determining the concentrations of substances contained in gaseous and liquid samples, featuring an indicator layer with one or more indicator substances, are not well suited for use with microanalysis equipment, nor are they easy to mass-produce. These disadvantages are eliminated by integrating on the carrier layer (1) at least one photosensitive element (3) and its electric contact leads in planar arrangement, and by establishing optical contact between the indicator substance (7, 7') of the indicator layer (6) stimulated by the excitation radiation (11), and the photosensitive elements (3).
Abstract:
A device and a method are provided for measuring the moisture in die cast molds, the cavity of which is connected via an evacuation conduit to an evacuation device. The modular assembly of the device is connectable to the evacuation conduit and includes a sensor assembly to measure the moisture of gases evacuated from the mold cavity. The sensor assembly includes an emitter emitting electromagnetic radiation and a detector detecting electromagnetic radiation. On the basis of the measured values obtained during the evacuation action it can be determined whether the amount of a water/release agent mixture jetted into the mold cavity needs to be altered before the actual casting action.
Abstract:
A micromechanical structure with cavities, containers, openings, canals, depressions, humps or the like for examinations of sample substances for possible changes of physical and/or chemical properties with targeted evaluation and documentation for the purposes of biotechnology, gene technology, cell and immune research and other medical, agricultural and environment research, where the structure consists of semiconducting material (of the group III to V of the elements of the periodic system) or contain the latter or glass or ceramic, diamond, or carbon and is made by a masking technique, especially by a chemical etching technique.
Abstract:
Due to the size of the devices used for the excitation and measuring of light, conventional sensor elements for optically determining the concentrations of substances contained in gaseous and liquid samples, featuring an indicator layer with one or more indicator substances, are not well suited for use with microanalysis equipment, nor are they easy to mass-produce. These disadvantages are eliminated by using a unitary sensor element having a carrier layer, at least one photosensitive element with electric contact leads in contact with the carrier layer, and an indicator layer containing an indicator substance.
Abstract:
Blood gases and the like are monitored by a single probe having multiple dye wells and dyes immobilized in the wells, the dyes being exposed to the blood gases. Optical fibers and waveguides connected to the dye wells permit light to be directed from a light source to the dyes and the light due to absorption or the spontaneous emission of the dye returned to a light detector. The intensity, phase shift or other mechanism of the returned radiation is a measure of the partial pressure of a respective blood gas.
Abstract:
Method of generating a correction function for a light-emitting diode (LED) testing process, including: detecting light emitted by a reference LED and reflected from inactive LEDs on a panel within a field of view of a detector; varying a number of the inactive LEDs to derive uncorrected values of an optical parameter as a function of the number of inactive LEDs; detecting light emitted by the reference LED, or by an active LED having identical optical properties, in the absence of any other LEDs, to determine at least one reference value for each optical parameter; and calculating differences between the uncorrected values and each reference value to generate the correction function, the correction function being based on the number of inactive LEDs which are arranged within the field of view of the detector in the light detecting step.