Abstract:
The sensitivity of capillary flow cells such as described in the European patent application nr. 90200691.5 has been substantially improved by optimizing the alignment of the longitudinal section (middle part) of the bent fused silica capillary, by increasing the aperture ratio (flow cell diameter/flow cell length) and by making use of fiber optics for light beam guiding and enhancing the light propagation through the capillary flow cell. These improvements can be applied to any type of longitudinal flow cells including "Z" and "U" shaped capillary flow cells (Figure 1). The alignment of the middle part [2] of the bent fused silica capillary [3,4] is no longer parallel to the optical axes but shows a deviation by angle ψ - (Figure 2). This angle is of the same value as the angle by which the light beam is refracted during its entrance into the capillary glass tubing and, therefore, compensates for loss in refracted light. With aperture ratios (dc/Ic) of typically 1/260 the ratios are to far away from their optimum values of 1/10 to 1/5 and result in high noise levels. By adapting the ratios to values closer to the optimum (e.g. 1/40) noise levels can be reduced substantially. The use of fiber optics [6] allows for optimal light beam guiding to and from the capillary flow cell and increases the light throughput (Figure 3). Further it allows for placing the flow cell (sensing region) in distance to the detection device. This invention relates to a capillary flow cell for use in microseparation techniques such as capillary liquid chromatography, supercritical fluid chromatography, capillary electroseparations (e.g., capillary zone electrophoresis, micellar electrokinetic capillary chromatography, electrochromatography) and related techniques and to a method for manufacturing capillary flow cells of improved sensitivity.
Abstract:
Die Erfindung betrifft eine mobile photometrische Messvorrichtung mit: mindestens einem Messmodul, bestehend aus einer Lichtquelle, einem Detektor und einem Optikgerüst mit einer Optik mit integrierten Filtereigenschaften oder einer Optik und mindestens einem Filter, wobei diese Komponenten auf einer Platine, in einem Gehäuse und/oder einem Baustein verschaltet angeordnet sind. Ferner betrifft die Erfindung ein mobiles photometrisches Messverfahren an Mikrotitierplatten mit Gittersensoren.
Abstract:
An optical sensor may include a sensor head that has an optical window for directing light into a flow of fluid and/or receiving optical energy from the fluid. The optical sensor may also include a flow chamber that includes a housing defining a cavity into which the sensor head can be inserted. In some examples, the flow chamber includes an inlet port defining a flow nozzle that is configured to direct fluid entering the flow chamber against the optical window of the sensor head. In operation, the force of the incoming fluid impacting the optical window may prevent fouling materials from accumulating on the optical window.
Abstract:
Systems and methods that facilitate analysis of superficial tissue based at least in part on a depth-selective fiber optic probe are discussed herein. The depth-selective fiber optic probe can include an illumination fiber for providing light to the superficial tissue, a collection fiber for collected reflected light, a ball lens that couples the fibers, and a protective overtube that houses the ball lens and fibers. The distances between the ball lens and fibers and between the fibers can be optimized based on several factors, such as by minimizing the illumination spot size, maximizing the overlap between the illumination and collection spots, and based on the angle between the illumination and collection beams.
Abstract:
A turbidity sensor for underwater measurements is provided with a watertight housing, a light emitting diode, a first light focusing device for focusing a light emitted from the diode and passing the focused light into to-be-measured water, a second light focusing device for collecting at least one scattered light resulted form the focused light when passing the water, a photodiode for receiving the collected light thereby generating electronic signals, and an electronic board for processing the electronic signals.
Abstract:
Systems and methods are provided for a UV-VIS spectrophotometer, such as a UV-VIS detector unit included in a high-performance liquid chromatography system. In one example, a system for the UV-VIS detector unit may include a first light source, a signal detector, a flow path positioned intermediate the first light source and the signal detector, a second light source, and a reference detector. The first light source, the signal detector, and the flow path may be aligned along a first axis, and the second light source and the reference detector may be aligned along a second axis, different than the first axis.