Abstract:
A device for use in optical signal control is presented. The device comprises an amplification waveguide, including a pumpable medium, and a reference and a control inputs and an output selectively allowing transmission of light respectively into and out of said amplification waveguide. The reference input, the amplification waveguide and the output define together a transmission scheme for reference light through the pumpable medium. The control input and the amplification waveguide define a depletion scheme for the pumpable medium and control light. The device thus allows for controlling an output signal, formed by the transmission of the reference light, by controllable depletion of the pumpable medium.
Abstract:
An optoelectronic device includes an input waveguide structure that receives an input optical signal. A GeSi/Si waveguide structure receives from the input waveguide the input optical signal and performs selective optoelectronic operations on the input optical signal. The GeSi/Si waveguide structure outputs an optical or electrical output signal associated with the selective optoelectronic operations performed on the input optical signal. An output waveguide structure receives the output optical signal from the GeSi/Si waveguide structure and provides the optical output signal for further processing.
Abstract:
A gain equalizer in which a multichannel input light signal is split into its separate wavelength components by means of a dispersive element such as a grating, and the spatially separated wavelength components are passed through a linear array of variable optical attenuators based on liquid crystal phase elements which modulate the phase of part of the cross section of the light. The separate attenuated wavelength components are then recombined and output. The attenuation level of each variable optical attenuator is adjusted according to the output of the light as a function of its wavelength components, and in this way, the overall wavelength profile of the output light signal can be adjusted to any predefined form, whether a flattened spectral profile, as in gain equalization applications, or a spectral compensating profile.
Abstract:
An electro-optical switch is provided, that includes: a single mode optical waveguide having a thin ferroelectric oxide film for propagating a single mode of light; a coupler adjoining the single mode optical waveguide for coupling a part of the single mode of light from an optical fiber to the single mode optical waveguide; an electrically formed lens in the single mode optical waveguide for collimating the single mode of light from the coupler; and a switching module comprising another electrically formed lens in the single mode optical waveguide, for switching the single mode of light.
Abstract:
A Y-branch type optical coupler includes an optical coupling part to which a plurality of input-side optical waveguides through which the plurality of lights propagate, and one output-side optical waveguide are connected, wherein the optical coupling part has an isosceles trapezoid shape of which the width is narrowed in a taper shape at a first angle α from the input side to the output side (a traveling direction of light) in a plan view, at least two input-side optical waveguides among the plurality of input-side optical waveguides are disposed symmetrically with respect to a symmetry axis of the isosceles trapezoid, are inclined at a second angle θ that is different from the first angle α, and are connected to a lower bottom portion of the isosceles trapezoid, and the difference between the first angle and the second angle is 0.9° or more and 14.8° or less.
Abstract:
An electro-optical switch is provided, that includes: a single mode optical waveguide having a thin ferroelectric oxide film for propagating a single mode of light; a coupler adjoining the single mode optical waveguide for coupling a part of the single mode of light from an optical fiber to the single mode optical waveguide; an electrically formed lens in the single mode optical waveguide for collimating the single mode of light from the coupler; and a switching module comprising another electrically formed lens in the single mode optical waveguide, for switching the single mode of light.
Abstract:
A fiber optical attenuator utilizing the cut-off phenomenon for single mode propagation of an optical wave down a single mode fiber, comprising an element such as a pixelated liquid crystal element, capable of spatially changing the phase across the cross section of an input optical signal. Such a spatial phase change is equivalent to a change in the mode structure of the propagating wave. The signal propagating in the single mode output fiber is attenuated in accordance with the extent to which higher order modes are mixed into the low order mode originally present. When the mode is completely transformed to higher order modes, the wave is effectively completely blocked from entering the output single-mode fiber, and the attenuation is high. The level of attenuation is determined by the fraction of the wave which is converted to modes other than the lowest order mode, and is thus controllable by the voltage applied to the pixels of the liquid crystal element.
Abstract:
A novel device and method of beam steering for semiconductor lasers or optical amplifiers is disclosed. The method of the present invention achieves high signal extinction ratios, high speed, low chirp modulation by biasing a multi-lateral mode beam steering section. The device of the present invention comprises an active single vertical and lateral mode optical waveguide, a multi-lateral mode waveguide, and a mode converter. The mode converter efficiently couples output from an active single mode waveguide to two or more modes of a multi-lateral mode waveguide. Two guided modes arrive at a device facet with a particular intermodal phase difference based on initial mode phasing, multi-lateral mode waveguide length and modal dispersion properties, and facet angle. Beam steering is achieved through carrier antiguiding effect by injecting current into the multi-lateral mode waveguide from the mode converter thus changing the intermodal dispersion. Changing the intermodal phase difference changes the direction of beam propagation relative to the device facet, providing enhanced beam steering.
Abstract:
A novel device and method of beam steering for semiconductor lasers or optical amplifiers is disclosed. The method of the present invention achieves high signal extinction ratios, high speed, low chirp modulation by biasing a multi-lateral mode beam steering section. The device of the present invention comprises an active single vertical and lateral mode optical waveguide, a multi-lateral mode waveguide, and a mode converter. The mode converter efficiently couples output from an active single mode waveguide to two or more modes of a multi-lateral mode waveguide. Two guided modes arrive at a device facet with a particular intermodal phase difference based on initial mode phasing, multi-lateral mode waveguide length and modal dispersion properties, and facet angle. Beam steering is achieved through carrier antiguiding effect by injecting current into the multi-lateral mode waveguide from the mode converter thus changing the intermodal dispersion. Changing the intermodal phase difference changes the direction of beam propagation relative to the device facet, providing enhanced beam steering.
Abstract:
PROBLEM TO BE SOLVED: To provide an electro-optical switch which is little involved with the problems related to all the conventional type optical switches, uses a single mode optical signal, and realizes switching for a high data transmission rate. SOLUTION: The single mode optical switch has a thin layer ferroelectric oxidized film, and comprises: a single mode optical waveguide 212 for propagating light of a single mode; a photocoupler 214 disposed adjacent to the single mode optical waveguide 212 and used for coupling part of the single mode light from the optical fiber to the optical waveguide; a lens 220 formed electrically in the single mode optical waveguide 212 and used for collimating the single mode light from the photocoupler 214; and a switching module 224 disposed in the single mode optical waveguide 212 and including another electrically formed lens for switching the single mode light. COPYRIGHT: (C)2004,JPO