-
公开(公告)号:EP4376701A1
公开(公告)日:2024-06-05
申请号:EP22819040.1
申请日:2022-06-10
Applicant: Emagix, Inc.
Inventor: MUNN, Colyn , KAMINTSKY, Lyn , FRIEDMAN, Alon , KUKURIN, James , ABBASNEJAD, Amirreza
IPC: A61B3/12 , G06V10/40 , G06V10/764
CPC classification number: A61B3/12 , G06V40/193 , G06V2201/0320220101 , G06V10/761 , G06V40/197 , G06V10/26 , G06T7/0012 , G06T7/33 , G06T2207/1001620130101 , G06T2207/1006420130101 , G06T2207/3010120130101 , G06T2207/3004120130101 , G06T7/11 , G06T7/136 , G06T7/155
-
公开(公告)号:EP4374344A1
公开(公告)日:2024-05-29
申请号:EP22754033.3
申请日:2022-07-18
Applicant: Bayer Aktiengesellschaft
Inventor: SANROMA GÜELL, Gerard , BLANK, Markus , KLEMENS, Mark Alexander
IPC: G06V30/19
CPC classification number: G06V2201/0320220101 , G06F18/24133
-
公开(公告)号:EP4374333A1
公开(公告)日:2024-05-29
申请号:EP22737688.6
申请日:2022-06-02
Applicant: PAIGE.AI, Inc.
Inventor: KANAN, Christopher , GRADY, Leo
IPC: G06V10/82
CPC classification number: G06V2201/0320220101 , G06V10/82
-
公开(公告)号:EP4372695A1
公开(公告)日:2024-05-22
申请号:EP22212190.7
申请日:2022-12-08
Applicant: Koninklijke Philips N.V.
Inventor: WEHLE, Simon , GOOßEN, Andre , LOSSAU, Tanja , GESSERT, Nils Thorben , PETERS, Jochen , WAECHTER-STEHLE, Irina , WEBER, Frank Michael , PRATER, David
IPC: G06V10/25 , G06V10/44 , G06V10/46 , G06V10/772 , G06V10/776 , G06V10/82 , G06F18/2132 , G06F18/21 , G06F18/28 , G06T7/00
CPC classification number: G06V10/462 , G06V10/454 , G06V10/776 , G06V10/772 , G06V10/25 , G06V10/82 , G06F18/217 , G06F18/2132 , G06F18/28 , G06N3/0464 , G06V2201/0320220101 , G06T7/0012 , G06N3/084 , G06N3/048
Abstract: A method and system for providing saliency maps for a deep learning model. The method comprises inputting an input image into the deep learning model trained to output a metric score, from a plurality of metric scores, for the input image. A supportive saliency map is generated for the input image, from the deep learning model, corresponding to a first range of the metric scores for the image, thereby providing one or more supportive regions of the image indicative of the first range of metric scores. A distractive saliency map is also generated for the image, from the deep learning model, corresponding to a second range of the metric scores for the image, thereby providing one or more distractive regions of the image indicative of the second range of metric scores.
-
公开(公告)号:EP3938999B1
公开(公告)日:2024-05-15
申请号:EP20707479.0
申请日:2020-03-09
CPC classification number: G06T2207/1002420130101 , G06T2207/1005620130101 , G06T2207/1006420130101 , G06T2207/1010120130101 , G06T2207/2022120130101 , G06T2207/3002420130101 , G06T2207/3002820130101 , G06T2207/3005620130101 , G06T2207/3006120130101 , G06T2207/3001620130101 , G06T2207/3008120130101 , G06T2207/3008420130101 , G06T2207/3008820130101 , G06T2207/3009620130101 , G06T7/0012 , G06T7/136 , G06V20/695 , G06V20/698 , G06V2201/0320220101 , G06V10/803 , G06F18/251
-
公开(公告)号:EP3539477B1
公开(公告)日:2024-04-24
申请号:EP17868925.3
申请日:2017-08-24
CPC classification number: A61B8/06 , A61B8/13 , A61B5/0095 , A61B5/7425 , A61B5/02007 , G06T7/0016 , G06T2207/1013220130101 , G06T2207/3010120130101 , A61B5/743 , A61B5/0073 , A61B5/0035 , A61B5/7257 , A61B2576/0020130101 , G01N29/2418 , G01N29/4409 , G01N2291/0247520130101 , G16H30/40 , G06V40/14 , G06V10/143 , G06V2201/0320220101 , G06V10/761 , G06F18/22
-
公开(公告)号:EP3391284B1
公开(公告)日:2024-04-17
申请号:EP16876771.3
申请日:2016-12-16
CPC classification number: A61B6/032 , A61B6/501 , G06T2207/1008120130101 , G06T2207/2006120130101 , G06T2207/2008120130101 , G06T2207/2008420130101 , G06T2207/3001620130101 , G06T7/62 , G06T7/68 , G06T7/0012 , G06V10/454 , G06V2201/03120220101 , G06V2201/0320220101 , G06V10/82 , G06V10/764
-
18.
公开(公告)号:EP4443315A1
公开(公告)日:2024-10-09
申请号:EP23167009.2
申请日:2023-04-06
Applicant: NeraCare GmbH
Inventor: Ackermann, Leonhard
IPC: G06F18/2413 , G06T7/00 , G06V10/44 , G06V10/764 , G06V20/69
CPC classification number: G06V10/454 , G06V20/698 , G06V10/764 , G06V2201/0320220101 , G06F18/2413 , G06T7/0012
Abstract: Disclosed is a medical image analysis method, comprising obtaining at least one histological image depicting a primary melanoma tumor comprised in a stained tissue sample of a patient. The method further comprises analyzing the obtained image with a convolutional neural network, trained using (a) histological images depicting melanoma tumors of a plurality of persons and (b) person-specific event information indicative of (i) the person having experienced a predefined event and the time of the predefined event or (ii) the person not having experienced the predefined event and a time of observation of the person, to obtain a prognostic score indicative of a risk for the patient to experience a relapse, a metastasis or death. A method for training a corresponding convolutional neural network, a computer program product and a processing system are also disclosed.
-
19.
公开(公告)号:EP3875022B1
公开(公告)日:2024-10-02
申请号:EP19879182.4
申请日:2019-10-28
CPC classification number: H04N7/18 , G06T7/00 , A61B1/045 , G16H15/00 , G16H30/20 , G16H30/40 , G16H50/20 , G06V10/141 , G06V10/143 , G06V10/454 , G06V10/25 , G06V10/60 , G06V10/56 , G06V2201/0320220101 , G06V10/82 , A61B1/000094 , G06V10/764
-
公开(公告)号:EP3719808B1
公开(公告)日:2024-09-11
申请号:EP19167391.2
申请日:2019-04-04
CPC classification number: G16H50/20 , A61B3/12 , G06T7/0012 , G06T2207/3004120130101 , G06T2207/3010120130101 , A61B5/021 , A61B3/0025 , A61B2576/0220130101 , G06V40/193 , G06V2201/0320220101 , G06V10/82 , G06V10/764
-
-
-
-
-
-
-
-
-