Electrically isolated interconnects and conductive layers in
semiconductor device manufacturing
    12.
    发明授权
    Electrically isolated interconnects and conductive layers in semiconductor device manufacturing 失效
    半导体器件制造中的电隔离互连和导电层

    公开(公告)号:US6010917A

    公开(公告)日:2000-01-04

    申请号:US725646

    申请日:1996-10-15

    Abstract: A method for fabricating microelectronic deices in which an interconnect layer is electrically isolated from large protuberances that project from a lower conductive layer to a desired endpoint of a chemical-mechanical planarization process. The lower conductive layer is covered with an insulating material to form an insulator layer that generally follows the contour of the lower conductive layer and any large protuberances. A highly conductive interconnect material is then deposited over the insulator layer to form an interconnect layer that generally follows the contour of the insulator layer. The interconnect layer may be deposited directly on the insulator layer, or it may be deposited on an intermediate layer between the interconnect layer and the insulator layer. After the upper conductive layer is deposited, the insulator layer and the upper conductive layer are planarized with a chemical-mechanical planarization process to a desired endpoint.

    Abstract translation: 一种用于制造微电子器件的方法,其中互连层与从下导电层突出到化学机械平面化工艺的期望端点的大突起电隔离。 下导电层被绝缘材料覆盖以形成通常遵循下导电层和任何大突起的轮廓的绝缘体层。 然后将高度导电的互连材料沉积在绝缘体层上,以形成大致遵循绝缘体层的轮廓的互连层。 互连层可以直接沉积在绝缘体层上,或者它可以沉积在互连层和绝缘体层之间的中间层上。 在沉积上导电层之后,通过化学机械平面化工艺将绝缘体层和上导电层平坦化成期望的端点。

    APPLICATIONS OF GRAPHENE GRIDS IN VACUUM ELECTRONICS
    13.
    发明申请
    APPLICATIONS OF GRAPHENE GRIDS IN VACUUM ELECTRONICS 审中-公开
    石墨网在真空电子学中的应用

    公开(公告)号:WO2015175765A1

    公开(公告)日:2015-11-19

    申请号:PCT/US2015/030749

    申请日:2015-05-14

    Applicant: ELWHA LLC

    CPC classification number: H01J23/02 H01J1/48 H01J2203/0232

    Abstract: Graphene grids are configured for applications in vacuum electronic devices. A multilayer graphene grid is configured as a filter for electrons in a specific energy range, in a field emission device or other vacuum electronic device. A graphene grid can be deformable responsive to an input to vary electric fields proximate to the grid. A mesh can be configured to support a graphene grid.

    Abstract translation: 石墨烯网格被配置用于真空电子设备中的应用。 多层石墨烯栅格被配置为在特定能量范围内的电子的过滤器,在场发射器件或其它真空电子器件中。 石墨烯网格可以响应于输入而变形,以改变靠近网格的电场。 网格可以被配置为支持石墨烯网格。

    TRIODES USING NANOFABRIC ARTICLES AND METHODS OF MAKING THE SAME
    14.
    发明申请
    TRIODES USING NANOFABRIC ARTICLES AND METHODS OF MAKING THE SAME 审中-公开
    使用南方文章的三方及其制作方法

    公开(公告)号:WO2009005908A2

    公开(公告)日:2009-01-08

    申请号:PCT/US2008/064385

    申请日:2008-05-21

    Abstract: Vacuum microelectronic devices with carbon nanotube films, layers, ribbons and fabrics are provided. The present invention discloses microelectronic vacuum devices including triode structures that include three-terminals (an emitter, a grid and an anode), and also higher-order devices such as tetrodes and pentodes, all of which use carbon nanotubes to form various components of the devices. In certain embodiments, patterned portions of nanotube fabric may be used as grid/gate components, conductive traces, etc. Nanotube fabrics may be suspended or conformally disposed. In certain embodiments, methods for stiffening a nanotube fabric layer are used. Various methods for applying, selectively removing (e.g. etching), suspending, and stiffening vertically- and horizontally- disposed nanotube fabrics are disclosed, as are CMOS -compatible fabrication methods. In certain embodiments, nanotube fabric triodes provide high-speed, small-scale, low -power devices that can be employed in radiation-intensive applications.

    Abstract translation: 提供具有碳纳米管膜,层,带和织物的真空微电子器件。 本发明公开了包括三端(发射极,栅极和阳极)的三极管结构的微电子真空装置,以及诸如四极和五极管的高阶器件,所有这些都使用碳纳米管来形成 设备。 在某些实施例中,纳米管织物的图案化部分可以用作栅极/栅极部件,导电迹线等。纳米管织物可以悬挂或保形地设置。 在某些实施例中,使用用于加强纳米管织物层的方法。 公开了用于施加,选择性地去除(例如蚀刻)悬浮和加强垂直和水平布置的纳米管织物的各种方法,以及CMOS相容的制造方法。 在某些实施例中,纳米管织物三极管提供可用于辐射密集型应用中的高速度,小规模的低功率器件。

    APPLICATIONS OF GRAPHENE GRIDS IN VACUUM ELECTRONICS
    16.
    发明申请
    APPLICATIONS OF GRAPHENE GRIDS IN VACUUM ELECTRONICS 有权
    石墨网在真空电子学中的应用

    公开(公告)号:US20150243468A1

    公开(公告)日:2015-08-27

    申请号:US14706485

    申请日:2015-05-07

    Applicant: ELWHA LLC

    CPC classification number: H01J1/48 H01J3/021 H01J2203/0232 Y10T29/49204

    Abstract: Graphene grids are configured for applications in vacuum electronic devices. A multilayer graphene grid is configured as a filter for electrons in a specific energy range, in a field emission device or other vacuum electronic device. A graphene grid can be deformable responsive to an input to vary electric fields proximate to the grid. A mesh can be configured to support a graphene grid.

    Abstract translation: 石墨烯网格被配置用于真空电子设备中的应用。 多层石墨烯栅格被配置为在特定能量范围内的电子的过滤器,在场发射器件或其它真空电子器件中。 石墨烯网格可以响应于输入而变形,以改变靠近网格的电场。 网格可以被配置为支持石墨烯网格。

    ELECTRONIC DEVICE MULTI-LAYER GRAPHENE GRID
    17.
    发明申请
    ELECTRONIC DEVICE MULTI-LAYER GRAPHENE GRID 有权
    电子设备多层石墨网

    公开(公告)号:US20150213992A1

    公开(公告)日:2015-07-30

    申请号:US14613459

    申请日:2015-02-04

    Applicant: ELWHA LLC

    CPC classification number: H01J1/48 H01J3/021 H01J2203/0232 Y10T29/49204

    Abstract: A vacuum electronic device includes a multi-layer graphene grid that includes at least two layers of graphene, where the transmission of electrons through the multi-layer graphene grid can be tuned by varying the parameters of the vacuum electronic device such as the number of graphene layers, relative positions of the electrodes, voltage biases applied to the electrodes, and other device parameters.

    Abstract translation: 真空电子器件包括多层石墨烯网格,其包括至少两层石墨烯,其中可以通过改变真空电子器件的参数(例如石墨烯的数量)来调节电子穿过多层石墨烯网格的透射 电极的相对位置,施加到电极的电压偏压和其它器件参数。

    Field emission cathode and field emission display employing with same
    18.
    发明授权
    Field emission cathode and field emission display employing with same 有权
    场致发射阴极和场致发射显示器采用相同的

    公开(公告)号:US08089206B2

    公开(公告)日:2012-01-03

    申请号:US12384232

    申请日:2009-04-02

    Abstract: A field emission display includes a field emission cathode and an anode electrode plate arranged above the field emission cathode. The filed emission cathode includes a substrate, and a plurality of electron-emitting areas spaced apart from each other and arranged on the substrate. Each of the electron-emitting areas includes a cathode, a gate electrode, and a number of first and second conductive lines. The cathode includes a first conductive substrate and a first carbon nanotube assembly having a plurality of carbon nanotubes each having a cathode emitting end having a needle-shaped tip. The gate electrode is faced to the cathode emitting end. The taper-shaped tips of the cathode emitting ends and the gate have a small size and higher aspect ratio, allowing them to bear a larger emission current at a lower voltage.

    Abstract translation: 场发射显示器包括场发射阴极和布置在场发射阴极上方的阳极电极板。 该场致发射阴极包括一个衬底和多个彼此间隔开并布置在衬底上的电子发射区。 每个电子发射区域包括阴极,栅电极和多个第一和第二导电线。 阴极包括第一导电基板和具有多个碳纳米管的第一碳纳米管组件,每个碳纳米管的阴极发射端均具有针状尖端。 栅电极面向阴极发射端。 阴极发射端和栅极的锥形尖端具有小尺寸和更高的纵横比,允许它们在较低电压下承受较大的发射电流。

    TRIODES USING NANOFABRIC ARTICLES AND METHODS OF MAKING THE SAME
    19.
    发明申请
    TRIODES USING NANOFABRIC ARTICLES AND METHODS OF MAKING THE SAME 失效
    使用南方文章的三方及其制作方法

    公开(公告)号:US20090115305A1

    公开(公告)日:2009-05-07

    申请号:US12124475

    申请日:2008-05-21

    Abstract: Vacuum microelectronic devices with carbon nanotube films, layers, ribbons and fabrics are provided. The present invention discloses microelectronic vacuum devices including triode structures that include three-terminals (an emitter, a grid and an anode), and also higher-order devices such as tetrodes and pentodes, all of which use carbon nanotubes to form various components of the devices. In certain embodiments, patterned portions of nanotube fabric may be used as grid/gate components, conductive traces, etc. Nanotube fabrics may be suspended or conformally disposed. In certain embodiments, methods for stiffening a nanotube fabric layer are used. Various methods for applying, selectively removing (e.g. etching), suspending, and stiffening vertically- and horizontally-disposed nanotube fabrics are disclosed, as are CMOS-compatible fabrication methods. In certain embodiments, nanotube fabric triodes provide high-speed, small-scale, low-power devices that can be employed in radiation-intensive applications.

    Abstract translation: 提供具有碳纳米管膜,层,带和织物的真空微电子器件。 本发明公开了包括三端(发射极,栅极和阳极)的三极管结构的微电子真空装置,以及诸如四极和五极管的高阶器件,所有这些都使用碳纳米管来形成 设备。 在某些实施例中,纳米管织物的图案化部分可以用作栅极/栅极部件,导电迹线等。纳米管织物可以悬挂或保形地设置。 在某些实施例中,使用用于加强纳米管织物层的方法。 公开了用于施加,选择性地去除(例如蚀刻)悬浮和加强垂直和水平布置的纳米管织物的各种方法,以及CMOS兼容的制造方法。 在某些实施例中,纳米管织物三极管提供可用于辐射密集型应用中的高速,小规模,低功率的器件。

    Transmission electron microscope grid and manufacturing method thereof
    20.
    发明专利
    Transmission electron microscope grid and manufacturing method thereof 有权
    传输电子显微镜网格及其制造方法

    公开(公告)号:JP2012018926A

    公开(公告)日:2012-01-26

    申请号:JP2011149857

    申请日:2011-07-06

    CPC classification number: H01J9/14 H01J1/48 H01J37/20 H01J2203/0232

    Abstract: PROBLEM TO BE SOLVED: To provide a transmission electron microscope grid and a manufacturing method thereof.SOLUTION: A transmission electron microscope grid comprises: a grating plate having at least one through-hole; and a composite structure which is arranged on one surface of the grating plate to cover the through-hole of the grating plate. The composite structure is composed of at least one carbon nanotube structure and one graphene sheet. The carbon nanotube structure has a plurality of microholes, and the graphene sheet is arranged on one surface of the carbon nanotube structure to cover a plurality of the microholes. Part of the graphene sheet is suspended over a plurality of the microholes. The present invention also provides a manufacturing method of the transmission electron microscope grid.

    Abstract translation: 解决的问题:提供透射电子显微镜格栅及其制造方法。 透射电子显微镜栅格包括:具有至少一个通孔的光栅板; 以及复合结构,其布置在光栅板的一个表面上以覆盖光栅板的通孔。 复合结构由至少一个碳纳米管结构和一个石墨烯片构成。 碳纳米管结构具有多个微孔,并且石墨烯片被布置在碳纳米管结构的一个表面上以覆盖多个微孔。 石墨烯片的一部分悬挂在多个微孔上。 本发明还提供了一种透射电子显微镜栅格的制造方法。 版权所有(C)2012,JPO&INPIT

Patent Agency Ranking