Abstract:
Oscillateur hyperfréquence à au moins un transistor (1), bipolaire ou non. Dans le circuit d'émetteur (ou de source pour un transistor FET) de ce transistor (1) est placé un circuit réactif accordable (13, 15, 16) apte à règler la zone d'instabilité potentielle du transistor. Ce circuit comporte un tronçon de ligne série (13) et une capacité parallèle (15, 16) dont au moins une partie est constituée par un pavé conducteur (15) de dimensions ajustables.
Abstract:
A stable electromagnetic oscillator (30) comprises an amplifying element (3) in feedback association with a dual mode resonant cavity (12) that provides a double pole bandpass filter function. Two orthogonal modes (1 and 2) of electromagnetic energy resonate within the cavity (12). An output fromthe amplifying element (3) excitationally couples into the first mode (1), while the second mode (2) couples into the input of the amplifying element (3). The output (8) of the oscillator (30) is obtained from the first mode (1). Optional injection lock can be used for greater stability by means of coupling a stable a.c. reference (9) into the cavity (12) in alignment with the second mode (2). Optional electronic frequency tuning comprises a phase or frequency comparator (11) and a reference a.c. source (13), producing a d.c. feedback signal fed to varactor diodes (10). Coupling ports (4, 5, 6, 7) of the cavity (12) can be, e.g., irises, capacitive probes, coaxial probes, or any combination thereof. The electrical field associated with each port (4,5,6,7) is aligned with the electrical field of the mode (1 or 2) coupled thereby. A dielectric resonator can be positioned within the cavity (12) to allow for physical shrinking of the cavity (12) while maintaining the electromagnetic characteristics of the cavity (12).
Abstract:
A coplanar waveguide based microwave monolithic integrated circuit (MMIC) oscillator chip (14) has an active oscillator element (16) and a resonant capacitor (18) formed thereon and is flip-chip mounted on a dielectric substrate (12). A resonant inductor (22) is formed on the substrate (12) and interconnected with the resonant capacitor (18) to form a high Q-factor resonant circuit for the oscillator (10). The resonant inductor (22) includes a shorted coplanar waveguide section (24) consisting of first and second ground strips (24b, 24c), and a conductor strip (24a) extending between the first and second ground strips (24b, 24c) in parallel relation thereto and being separated therefrom by first and second spaces (26a, 26b), respectively. A shorting strip (24d) electrically interconnects adjacent ends of the conductor strip (24a) and first and second ground strips (24b, 24c), respectively. A dielectric film (34) may be formed over at least adjacent portions of the conductor strip (24a) and first and second ground strips (24b, 24c). The resonant inductor (22) is adjusted to provide a predetermined resonant frequency for the oscillator (10) by using a laser to remove part of the dielectric film (34) in the first and second spaces (26a, 26b) for fine adjustment, and/or to remove part of the shorting strip (24d) at the ends of the first and second spaces (26a, 26b) for coarse adjustment.
Abstract:
A tuner circuit includes a first IF signal generating a first oscillation signal, a local oscillator circuit outputting a local oscillator signal, a mixing circuit mixing the first IF signal and the oscillation signal to generate a second IF signal, and a first substrate on which at least the local oscillator signal is formed. The local oscillator circuit includes an oscillation circuit and a coaxial resonator connected to the oscillation circuit for correcting the influence of change in oscillation frequency owing to moisture and secular change. The coaxial resonator includes an impedance variable trimmer portion for adjusting the oscillation frequency, a central conductor provided at a fixed position with respect to the first substrate, and an insulator for providing insulation between the impedance variable trimmer and the central conductor. The impedance variable trimmer portion and the central conductor are adhered to one another via the insulator after adjusting is completed.
Abstract:
A microstripline resonator in which a desirable resonant frequency can be adjusted with less deterioration in Q and less production process steps is characterized in that a hollowed-out portion is formed in an electrode portion provided on an insulating substrate base. A width-narrowed portion is provided between the side edge of the electrode portion and the hollowed-out portion for adjusting the resonant frequency of the microstripline resonator.
Abstract:
In a voltage controlled oscillator, a dielectric resonator is mounted on a circuit board and a metal case is mounted on the circuit board to shield the dielectric resonator. The dielectric resonator comprises a C-shaped first electrode which is provided in a dielectric body, second and third electrodes which are arranged on upper and lower sides of the first electrode, a signal connecting pattern which is extended from the first electrode toward a side surface of the dielectric body, and earth connecting patterns which are extended from the first, second and third electrodes toward the side surface of the dielectric body, to provide predetermined impedance between the earth connecting pattern and the signal connecting pattern. The dielectric resonator is arranged with the second and third electrodes in parallel with a major surface of the circuit board, and the second electrode is upwardly exposed. A portion of the second electrode portion at a predetermined position is adapted to be trimmed so as to regulate the resonance frequency of the dielectric resonator, so as to regulate the oscillator frequency of the voltage controlled oscillator. The dielectric resonator can be miniaturized with no reduction of its Q-value.
Abstract:
The present invention relates to a microwave oscillator to be applied to radiosonde. The microwave oscillator in accordance with the present invention is constructed on a plane base plate of dielectric material (insulation material) on whose both sides conductor sheets are provided. The resonance circuit, which is the most important part of the microwave oscillator, is mounted fixedly on the one side of the base plate and electrically connected to the conductor sheet provided on the other side of the base plate. The element for determining the resonance frequency of this resonance circuit assumes a three dimensional form, whereby two bent conductor plates are combined into a case shaped body, whose one side is constructionally and electrically connected to the conductor sheet provided on the one side of the base plate.The transistor, which is an active element of the resonance circuit, is constructionally and electrically connected to a part of the case shaped metal body.The circuit elements for forming the oscillator circuit, such as resistors, the condensers and the transistor and so on are mounted on the other side of the base plate.