Abstract:
A frequency multiplier circuit generates an supplemental high-frequency timing signal from a single, low-frequency current-controlled oscillator (CCO). The current-controlled oscillator (CCO) generates a controlled discharge current and a controlled bias current which are controlled in parallel to substantially eliminate inaccuracies in a characteristic frequency-current curve of the current-controlled oscillator. The frequency multiplier circuit generates a high-frequency timing signal using the digitally-controlled CCO and avoids the usage of a phase-locked loop (PLL) technique. Specifically, a frequency multiplier includes a current-controlled oscillator having a plurality of input lines connected to receive a digital current select signal and having an output terminal connected to carry a timing signal at a current-controlled oscillator frequency f.sub.CCO set in accordance with the current select signal. The frequency multiplier further includes a control circuit having a first timing input terminal connected to the current-controlled oscillator output terminal to receive the current-controlled oscillator frequency f.sub.CCO, output lines connected to the current-controlled oscillator digital current select input lines, a second timing input terminal connected to receive a timing signal at a reference frequency f.sub.REF, and a plurality of input lines connected to receive a programmable frequency multiplication factor.
Abstract:
A multiple-frequency local oscillator (200) for providing an LO signal at one of a multiple of predetermined resonant frequencies associated with a number of resonators (210). It includes a number of LO input ports (205) for coupling to the plurality of resonators (210). The local oscillator is controlled to selectively provide at its LO output port (215) an output LO signal at any one of the resonant frequencies.
Abstract:
A wideband Voltage Controlled Oscillator (VCO) uses a resonant circuit tunable over a wide range of resonant frequencies. The resonant circuit includes voltage variable elements such that the resonant frequency, and thus the frequency of oscillation, may be electronically tuned. The voltage variable elements are arranged such that multiple control voltages determine the resonant frequency. A first control voltage is applied to a first set of tuning elements and operates as a coarse control of the resonant frequency. A second control voltage is applied to a second set of tuning elements and operates as a fine control of the resonant frequency. Using multiple control voltages on multiple elements allows for a wideband VCO while maintaining a low VCO gain.
Abstract:
Relax oscillation circuits have at least one comparison circuit that is structured with a flipped gate transistor and a normal MOS transistor wherein the two transistors having different threshold voltages. The relaxation oscillators are configured for charging and discharging capacitances between the threshold voltages of the flipped gate transistor and the normal MOS transistor by toggling the state of a latching circuit to control the charging and discharging of the capacitances.
Abstract:
A method and a circuit for exciting a crystal oscillation circuit are disclosed herein. The crystal oscillation circuit comprising: charging, with a charging circuit, a voltage-controlled oscillator; providing, with the voltage-controlled oscillator, an exciting signal; blocking, with a direct current blocking capacitor, direct current from the voltage-controlled oscillator to the crystal oscillation circuit; and exciting, with the exciting signal, the crystal oscillation circuit. The circuit for exciting a crystal oscillation circuit, comprising: a charging circuit; a voltage-controlled oscillator coupled to the charging circuit and configured to provide an exciting signal to the crystal oscillation circuit; and a direct current blocking capacitor connected between the voltage-controlled oscillator and the crystal oscillation circuit and configured to block direct current from the voltage-controlled oscillator.
Abstract:
A nano-electro-mechanical systems (NEMS) oscillator can include an insulating substrate, a source electrode and a drain electrode, a metal local gate electrode, and a micron-sized, atomically thin graphene resonator. The source electrode and drain electrode can be disposed on the insulating substrate. The metal local gate electrode can be disposed on the insulating substrate. The graphene resonator can be suspended over the metal local gate electrode and define a vacuum gap between the graphene resonator and the metal local gate electrode.
Abstract:
A nano-electro-mechanical systems (NEMS) oscillator can include an insulating substrate, a source electrode and a drain electrode, a metal local gate electrode, and a micron-sized, atomically thin graphene resonator. The source electrode and drain electrode can be disposed on the insulating substrate. The metal local gate electrode can be disposed on the insulating substrate. The graphene resonator can be suspended over the metal local gate electrode and define a vacuum gap between the graphene resonator and the metal local gate electrode.
Abstract:
Systems and methods are described for a band switchable voltage controlled oscillator. A method comprises: operating said voltage controlled oscillator in a first frequency band by switching a first capacitive circuit having a capacitance that varies with a tuning voltage; and operating said voltage controlled oscillator in a second frequency band by switching a second capacitive circuit having a capacitance that does not vary with the tuning voltage. An apparatus comprises: a switchable variable capacitance circuit; a switchable fixed capacitance circuit coupled to the switchable variable capacitance circuit; a controller for selectively switching said switchable fixed and variable capacitance circuits; a fixed tank capacitance circuit coupled to the switchable fixed capacitance circuit; a main tuning voltage variable capacitance circuit coupled to the fixed tank capacitance circuit; a tank inductance coupled to the main tuning voltage variable capacitance circuit; and an amplifier circuit coupled to the tank inductance.
Abstract:
BiCMOS technology is used in the design of a VCO (200) to improve low DC operation. The VCO (200) includes two coupled oscillator circuits (201,219) tuned to different fixed frequencies such that the oscillator resonant frequencies define the tuning range of the VCO (200). The oscillator circuits (201, 219) are coupled such that the frequency of oscillation of the VCO (200) is adjustable via variable resistors (206, 214) by manipulating the bias currents to the two oscillator circuits (201,219). A biasing circuit (208) along with variable resistors (206 and 214) provide the DC bias to the oscillator circuits (201 and 219). The biasing circuit (208) maintains the sum of the biasing currents to the oscillator circuits constant. The oscillator circuits (201, and 219) are interconnected utilizing an RF coupling circuit (211). The VCO (200) is capable of operating at voltages as low as 1.8 volts DC.
Abstract:
A broadband variable voltage control oscillator and a method thereof are provided to prevent performance degradation due to a phase noise by simplifying a resonator structure of a voltage control oscillation part. A voltage mapping part(603) receives a digital control bit and an analog control signal, and outputs an analog control voltage. The digital control bit is used for a variable frequency. The analog control signal is used for minute frequency tuning. A voltage control oscillation part(604) outputs a frequency corresponding to the analog control voltage. The voltage mapping part has a structure of a resistor ladder digital-analog converter.