Abstract:
A first low-noise amplifier is connected to a first receiving processing unit through a first cable and a bypass circuit is provided in parallel to the first low-noise amplifier so as to bypass the first low-noise amplifier. In the case that the intensity of broadcasting signal is more than a predetermined value, when the C/N is more than a first predetermined value and less than a second predetermined value higher than the first predetermined value, the broadcasting signal is transmitted to the first cable through the first low-noise amplifier, and when the C/N is less than the first predetermined value or more than the second predetermined value, the broadcasting signal is not input to the first low-noise amplifier but transmitted to the first cable through the bypass circuit.
Abstract:
A power amplifier circuit, including: an input node configured to receive a radio frequency (RF) signal; an output node configured to output an amplified RF signal; a main path switchably coupled between the input node and the output node, and including a first plurality of amplification stages to generate a first amplified RF signal; a bypass path switchably coupled between the input node and the output node, and including at least one second amplification stage to generate a second amplified RF signal; and a coupling switch configured to reuse at least a portion of the bypass path to drive the main path to generate a third amplified RF signal.
Abstract:
A transmission power control apparatus which reduces the number of steps required for adjustments of the transmission power control apparatus and performs transmission power control with high accuracy in a wide dynamic range. The apparatus has a first variable amplifying circuit (122) with the resolution of 1 dB and a second variable amplifying circuit (123) with the resolution of 0.1 dB, where a correction value calculating section (106) calculates a correction value to compensate for deterioration in the accuracy of transmission power caused by a change in environment due to frequency characteristics and temperature characteristics and another correction value to compensate for error in transmission power, a transmission power calculating section (107) calculates transmission power obtained by correcting with the correction value specified transmission power to output to a communicating party based on the received signal, and a first set value calculating section (108) and a second set value calculating section (109) calculate gain values to set on the first variable amplifying circuit (122) and second variable amplifying circuit (123) based on the corrected transmission power, respectively.
Abstract:
A first low-noise amplifier is connected to a first receiving processing unit through a first cable and a bypass circuit is provided in parallel to the first low-noise amplifier so as to bypass the first low-noise amplifier. In the case that the intensity of broadcasting signal is more than a predetermined value, when the C/N is more than a first predetermined value and less than a second predetermined value higher than the first predetermined value, the broadcasting signal is transmitted to the first cable through the first low-noise amplifier, and when the C/N is less than the first predetermined value or more than the second predetermined value, the broadcasting signal is not input to the first low-noise amplifier but transmitted to the first cable through the bypass circuit.
Abstract:
An amplification device including: a switch including an output that is suitable for being connected to a first or a second input; a first branch that is connected to the first input, which applies a first gain to generate a first amplified signal; a second branch that is connected to the second input, which applies a second gain to generate a second amplified signal; a controller for controlling the switching of the switch to apply the first or the second amplified signal to the output, depending on whether or not the value of a predetermined quantity of the first amplified signal falls within a predetermined range. The first gain and the second gain being non-zero real numbers of opposite sign.
Abstract:
An apparatus may include a multi-throw switch having a common terminal connected to an antenna of a wireless communication system. The multi-throw switch may be configured to direct signals received from the antenna between (1) an amplification path that connects a receive terminal of the multi-throw switch to a receiver of the wireless communication system and (2) at least one bypass path that connects an additional receive terminal of the multi-throw switch to the receiver. The amplification path may include at least one amplifier that amplifies signals received from the antenna, and the bypass path may have a gain that is less than a gain of the amplification path. Various other systems and methods are also disclosed.
Abstract:
An apparatus may include a multi-throw switch having a common terminal connected to an antenna of a wireless communication system. The multi-throw switch may be configured to direct signals received from the antenna between (1) an amplification path that connects a receive terminal of the multi-throw switch to a receiver of the wireless communication system and (2) at least one bypass path that connects an additional receive terminal of the multi-throw switch to the receiver. The amplification path may include at least one amplifier that amplifies signals received from the antenna, and the bypass path may have a gain that is less than a gain of the amplification path. Various other systems and methods are also disclosed.
Abstract:
A power amplifier circuit, including: an input node configured to receive a radio frequency (RF) signal; an output node configured to output an amplified RF signal; a main path switchably coupled between the input node and the output node, and including a first plurality of amplification stages to generate a first amplified RF signal; a bypass path switchably coupled between the input node and the output node, and including at least one second amplification stage to generate a second amplified RF signal; and a coupling switch configured to reuse at least a portion of the bypass path to drive the main path to generate a third amplified RF signal.
Abstract:
L'invention porte sur un dispositif d'amplification (2) comportant: -un commutateur (18) comportant une sortie (18S) propre à être connectée à une première ou une deuxième entrée (18E1, 18E2); -une première branche (20) connectée à la première entrée (18E1),qui applique un premier gain (K1)pour générer un premier signal amplifié (s a1 ); -une deuxième branche (22) connectée à la deuxième entrée (18E2), qui applique un deuxième gain (K2)pour générer un deuxième signal amplifié (s a2 ); -un contrôleur (24) de commande de commutation du commutateur (18) pour appliquer le premier ou le deuxième signal amplifié à la sortie, selon que la valeur d'une grandeur prédéterminée du premier signal amplifié (s a1 ) appartient ou on à une plage prédéterminée. Le premier gain (K1) et le deuxième gain (K2) étant des réels non nuls de signes opposés.