Abstract:
On a transmission side, a spectrum−spread spread modulating signal is multiplexed with a spectrum−not−spread information modulating signal in the same frequency band, and, on a reception side, a spread−spectrum demodulating unit (1803) demodulates the spread modulating signal. Then, a spread−spectrum modulating signal reproducing unit (1805) generates a replica signal of the spread modulating signal and a subtraction unit (1807) removes the replica signal from a multiplexed signal to thereby extract an information signal not spectrum−spread. Accordingly, even when many information signals are transmitted in the same frequency band, they can be satisfactorily separated and demodulated on the reception side.
Abstract:
A data processor (192) selects a set of BOC correlations in accordance with a BOC correlation function for the sampling period if the primary amplitude exceeds or equals the secondary amplitude for the sampling period. The data processor (192) selects a set of QBOC correlations in accordance with a QBOC correlation function for the sampling period if the secondary amplitude exceeds the primary amplitude for the sampling period. The data processor (192) uses either the BOC correlation function or the QBOC correlation function, whichever with greater amplitude, at each sampling period to provide an aggregate correlation function that supports unambiguous code acquisition of the received signal.
Abstract:
A method of embedding information within a burst carrier signal, the method comprising modulating meta-data using a modulator such that a meta-carrier signal results, lowering a Power Spectral Density (PSD) of the meta-carrier signal by Direct Sequence Spread Spectrum (DSSS) chipping the meta-carrier signal using a linear Pseudo-Random Number (PRN) sequence, embedding one or more modulated symbols of the meta-carrier signal within an unused portion of one or more quadrants of a modulation constellation of a burst carrier signal such that a composite carrier signal results, and synchronously transmitting the composite carrier signal using a transmitter such that symbols of the meta-carrier signal are synchronized with symbols of the burst carrier signal.
Abstract:
A data processor selects a set of BOC correlations in accordance with a BOC correlation function for the sampling period if the primary amplitude exceeds or equals the secondary amplitude for the sampling period. The data processor selects a set of QBOC correlations in accordance with a QBOC correlation function for the sampling period if the secondary amplitude exceeds the primary amplitude for the sampling period. The data processor uses either the BOC correlation function or the QBOC correlation function, whichever with greater amplitude, at each sampling period to provide an aggregate correlation function that supports unambiguous code acquisition of the received signal.
Abstract:
A data processor selects a set of BOC correlations in accordance with a BOC correlation function for the sampling period if the primary amplitude exceeds or equals the secondary amplitude for the sampling period. The data processor selects a set of QBOC correlations in accordance with a QBOC correlation function for the sampling period if the secondary amplitude exceeds the primary amplitude for the sampling period. The data processor uses either the BOC correlation function or the QBOC correlation function, whichever with greater amplitude, at each sampling period to provide an aggregate correlation function that supports unambiguous code acquisition of the received signal.
Abstract:
A data processor selects a set of BOC correlations in accordance with a BOC correlation function for the sampling period if the primary amplitude exceeds or equals the secondary amplitude for the sampling period. The data processor selects a set of QBOC correlations in accordance with a QBOC correlation function for the sampling period if the secondary amplitude exceeds the primary amplitude for the sampling period. The data processor uses either the BOC correlation function or the QBOC correlation function, whichever with greater amplitude, at each sampling period to provide an aggregate correlation function that supports unambiguous code acquisition of the received signal.
Abstract:
A system and method include a modulator to combine satellite codes with a carrier signal on an I-Channel and a Q-Channel. A processor applies a code power fraction to the combined codes on the I-Channel and the Q-Channel to provide a unity amplitude while maintaining a phase angle so that a signal constant envelope transmission can occur without a balancing code.
Abstract:
Communication methods for receiving and demodulating in mobile devices signals from multiple locations and for providing baseband position finder signal. Providing in a first cross-correlator and filter cross-correlated in-phase and quadrature-phase filtered baseband signals from a digital input signal and in a second cross-correlator spread spectrum signals from a voice input signal. Providing Orthogonal Frequency Division Multiplex (OFDM) signal from a video input signal. Combining baseband position finder signal with one or more of cross-correlated in-phase and quadrature-phase filtered baseband signals, or cross-correlated in-phase and quadrature-phase spread spectrum baseband signals, or OFDM baseband signal, into a combined baseband signal and modulating and transmitting combined signal. Touch screen control signal for control of mobile devices.
Abstract:
A airplane based communication and position finding method for receiving in a transceiver a OFDM signal from a mobile unit in an airplane. Demodulating and processing an OFDM received signal into a processed OFDM signal and processing and modulating the processed OFDM signal into a processed modulated signal. Transmitting in the airplane based transceiver the modulated signal to a satellite receiver. Receiving in the airplane based transceiver a second modulated signal from a satellite transmitter, demodulating and processing the second modulated signal into a processed second OFDM signal and modulating and transmitting said processed second OFDM signal to mobile unit. Method for processing an input voice signal, in a mobile unit, into a processed cross-correlated CDMA signal, modulating and transmitting cross-correlated CDMA signal into a modulated transmitted CDMA signal, used in a cellular system.
Abstract:
A ship based cellular and satellite transceiver receives, demodulates and processes data, voice and video signals from a satellite transmitter and provides the processed signals in cascade to a OFDM and to a CDMA modulator and transmitter for transmission to a ship based mobile unit. The OFDM signal is transmitted in a Wi-Fi network and the CDMA signal is transmitted in frequency bands used by cellular phones and cellular connected devices. The ship based transceiver receives from a mobile unit, e.g. from a cellular phone or a computer an OFDM or a CDMA signal generated and transmitted by the mobile unit and receives, demodulates and processes the cellular phone transmitted signal and provides these processed signals for cascade processing, modulation and transmission to a satellite.