Abstract:
A method includes sending, by a master beacon device and one or more beacon repeater devices, ultra-wideband (UWB) beacon frames. The UWB beacon frames are transmitted as interleaved pairs of UWB beacon frames. Each interleaved pair includes a first UWB beacon frame and a second UWB beacon frame. For each interleaved pair, the first UWB beacon frame and the second UWB beacon frame are transmitted with a master time delay. The method further includes receiving, by one or more tag devices, at least one of the interleaved pairs of UWB beacon frames.
Abstract:
A method (1300) is provided for generating one or more waveforms (130, 140). The method includes: generating a first toggle signal (1130, 1330) in response to a clock signal (1110), the first toggle signal having one of a first positive shape, a null shape, and a first negative shape for each cycle of the clock signal; multiplying the first toggle signal by a first coefficient signal to create a first intermediate signal (1440); generating a second toggle signal (1140, 1330) in response to the clock signal, the second toggle signal having one of a second positive shape, the null shape, and a second negative shape for each cycle of the clock signal; multiplying the second toggle signal by a second coefficient signal to create a second intermediate signal (1440); and generating a first output signal (1170) by adding the first intermediate signal and the second intermediate signal together (1350).
Abstract:
The present invention relates to a wireless communications system, in particular to a method for transmitting and receiving concatenated data bursts in a wireless communications system. The invention is particularly useful in the field of impulse-based ultra-wideband systems. In an aspect of the invention, a transmitting device is presented for generating and transmitting concatenated bursts or string. In another aspect of the invention, a receiving device is presented for receiving the string. The receiving device further uses frequency domain equalization approach to mitigate inter-symbol interference within the string.
Abstract:
A method determines a delay time between reference and data pulses in a time-hopping impulse radio system. Channel state information of a channel between two transceivers is estimated periodically. The delay time frame between the reference and data pulses is then determined according to the channel state information.
Abstract:
The present invention relates a wireless communications system, in particular to a method for transmitting and receiving concatenated data bursts in a wireless communications system. The invention is particularly useful in the field of impulse-based ultra-wideband systems. In an aspect of the invention, a transmitting device is presented for generating and transmitting concatenated bursts or string. In another aspect of the invention, a receiving device is presented for receiving the string. The receiving device further uses frequency domain equalization approach to mitigate inter-symbol interference within the string.
Abstract:
An ultra-wideband wireless information transmission method comprising transmitting electromagnetic data pulses and reference pulses over the transmission medium, information being encoded as a time shift between the data pulses and the reference pulses, at least two of the data pulses sharing a common reference pulse, and receiving the data and reference pulses and using the associated timing information to recover said information.
Abstract:
An embodiment of the present invention relates to an ultra low power wideband asynchronous binary phase shift keying (BPSK) demodulation method and a circuit configuration thereof. The ultra low power wideband asynchronous BPSK demodulation circuit comprises a sideband division and upper sideband signal delay unit dividing a modulated signal into an upper sideband and a lower sideband by a first order high-pass filter and a first order low-pass filter; a data demodulation unit latching, through a hysteresis circuit, a signal generated by a difference between the analog signals in which a phase difference between the delayed upper sideband analog signal and the lower sideband analog signal is aligned at 0°, so as to demodulate digital data; and a data clock recovery unit for generating a data clock by using a signal digitalized from the lower sideband analog signal through a comparator and a data signal.
Abstract:
A multiple access technique for a wireless communication system establishes separate channels by defining different time intervals for different channels. In a transmitted reference system different delay periods may be defined between transmitted reference pulses and associated data pulses for different channels. In addition, a multiple access technique may employ a common reference pulse for multiple channels in a transmitted reference system. Another multiple access technique assigns different pulse repetition periods to different channels. One or more of these techniques may be employed in an ultra-wide band system.
Abstract:
A multiple access technique for a wireless communication system establishes separate channels by defining different time intervals for different channels. In a transmitted reference system different delay periods may be defined between transmitted reference pulses and associated data pulses for different channels. In addition, a multiple access technique may employ a common reference pulse for multiple channels in a transmitted reference system. Another multiple access technique assigns different pulse repetition periods to different channels. One or more of these techniques may be employed in an ultra-wide band system.
Abstract:
An apparatus and methods for communicating between or among global positioning system (GPS) receivers enhanced with wideband transmitters, which can include ultra wideband (UWB) transmitters. In one embodiment, WB pulses are precorrected by a transmitter to align with a clock common to both enhanced GPS receivers for autocorrelation, thereby simplifying WB or UWB receiver circuitry. One embodiment includes a circuit and method for adjusting the timing of a pulse by phase shifting the pulse by adjusting amplitude. The wideband pulses are used to communicate data between enhanced GPS receivers. A relatively long code can also be communicated between enhanced GPS receivers, thereby permitting the same WB signal to be used to determine range between the enhanced GPS receivers. The communicated data can include the absolute position of the enhanced GPS receiver, which when combined relative positioning from ranging data, can advantageously permit cooperatively positioning and/or navigation.