Abstract:
An image processing apparatus for correcting a dislocation of image, pixels being arranged in a first and second directions perpendicular to each other, including: a section which breaks down a correction amount of the image of each pixel in the second direction into a first shift amount with a unit of a prescribed block, a second shift amount with a unit of the pixel, and a third shift amount less than the pixel size; a minimal shift section which shifts the image data by the third shift amount; a pixel unit shift section which shifts the image data by the second shift amount; and a block unit shift section which shifts the image data by the first shift amount, during compression and storage processing of the image data in the block unit, and executing arrangement of the image data after reading-out and expanding the compressed image data.
Abstract:
An image reading apparatus includes a sensor section which includes a color line sensor which reads a color image and a monochrome line sensor which reads a monochrome image provided in parallel with and a specific distance away from the color line sensor, an input section which inputs a document image to the color line sensor and the monochrome line sensor, and a control section which, when reading an image from a document by use of the input section, starts the reading of an image by the color line sensor and the reading of an image by the monochrome line sensor with the same timing.
Abstract:
There is disclosed a recording sheet for use in an image recording apparatus which forms an image by a recording head, the recording sheet has a pattern for measurement in which a correction amount for correction of a positional shift of a recorded dot recorded by the recording head is measurable based on a positional relationship with an image for measurement formed by the recording head, and accordingly it is possible to correct arrangement of recorded dots and to record an image without any distortion.
Abstract:
An automatic image calibration method is provided for a contact type scanner. The inventive method involves in first reading an image of a test chart that consists of at least a horizontal line and a plurality of slanting lines. Then, compute the calibration parameters according to the image of the test chart. The calibration parameters include a vertical displacement value, a horizontal displacement value, and a slope value. After obtaining the calibration parameters for each sensor chip, the initialization step is complete. The calibration parameters must be stored in a memory device for an application program to read. Later on, for each image read by the contact type scanner, the application program can automatically calibrate the image according to the calibration parameters stored in the memory device.
Abstract:
An image reading apparatus has a photoelectric converting element for receiving light obtained from an original illuminated by a light source, a lens for imaging the light obtained from the original on the photoelectric converting element, and a guide member for guiding the original to an original reading position, the guide member having a hollow portion for containing the photoelectric converting element and the lens therein.
Abstract:
A method and apparatus are provided for efficiently obtaining navigational position of a sensor array (22) based on a correlation between images captured by the sensor array at successive points in time. This is achieved by first acquiring a reference frame through said sensor array (22), successively acquiring a sample frame through said sensor array. Correlation data representing a relationship between the sample frame and the reference frame is then generated and a displacement of a reference feature contained in both the reference frame and the sample frame is determined based on the correlation data. The correlation surface of the correlation data is modelled as a general two-dimensional Taylor series expansion. The method and apparatus can be employed in a scanning device (10) to provide efficient scheme for obtaining navigational information based on a comparison of image frames captured by a sensor array of the scanning device at successive points in time.
Abstract:
The invention relates to a method for engraving printing cylinders used for rotogravure in an electronic engraving machine. According to this said method, at least two engraving sections (A, B) of a given width (SB) are fitted next to each other, in the acial direct ion of the printing cylinder (1). These sections (AB) are engraved with their respective engraving element (3). Before engraving, an axial reference position is pre-set for each engraving element (3). The axial spacing between these reference positions corresponds to the pre-set widths (SB) of the engraving sections (A, B). The engraving elements (3) are placed approximately in their reference positions (RP). The differences in the axial spacing between the reference positions of the engraving elements (3) and the actual positions occupied as a result of the approximate positioning are then measured. During engraving, the engraving elements (3) are moved along the printing cylinder (1), still incorrectly spaced as a result of the approximate positioning. The spacing errors are compensated by displaced engraving of the engraving sections (A, b) on the printing cylinder (1), so that the engraving sections (A, B) have the pre-set widths (SB) despite the incorrect spacing between the graving elements (3).
Abstract:
A printing machine includes a print head and a set of sensors adapted to accurately determine the relative position between the print head and a receiver (print media) onto which an image is to be formed. Any dislocation of the receiver from a predetermined nominal position is translated by a data conditioner into correction signals. These correction signals are integrated with nominal incoming image data directed to the print head. The print head then prints an image that compensates for positional variation of the receiver so that a resultant image is properly aligned with the receiver.
Abstract:
A recording sheet used on an image recording device that forms images by a recording head, wherein the recording sheet has measuring patterns capable of measuring, based on a positional relation with a measuring image formed by a recording head, a correction amount for correcting the position deviation of recorded dots recorded by a recording head, whereby it is possible to correct the arrangement of recorded dots to record distortion−free images.
Abstract:
A method for orienting a dual mouse optical scanner on an orthogonal grid pattern comprising the steps of (a) placing a dual mouse scanner on a grid pattern at a small angle to the vertical lines of the grid pattern and commencing motion detection with the two mice, (b) setting the coordinate position of each mouse at (0,0), (c) rotating the scanner in a predetermined manner while measuring the vertical distance on the grid pattern between the two mice for each new position of the scanner, (d) determining an average scanner position amongst all scanner positions having the same maximum vertical grid distance between the mice, and (e) establishing the coordinate position of one mouse at the average scanner position as the origin of a coordinate system in the memory of a computer in communication with the scanner and the vertical line closest to the origin and the coordinate position of the other mouse as the vertical axis of the coordinate system.