Abstract:
A bulb-type fluorescent lamp has a case having an open end portion for housing a lighting circuit therein, an arc tube extending outside through the open end portion of the case, and a globe having an open end portion for housing the arc tube therein. An adhesive is supplied to the inner surface of the open end portion of the case at four circumferentially spaced areas, and the open end portion of the globe is inserted into the open end portion of the case. As a result, the globe is fixed to the case with the adhesive.
Abstract:
In a firing furnace of plasma display panel, gas distribution piping and gas exhaust piping each have a circular cross section and a uniform diameter along the longitudinal direction of those pipings. The gas distribution piping has a plurality of circular openings formed in a side face thereof and the openings are constructed such that the opening becomes larger in a stepwise fashion in a direction from both end portions to the central portion of the gas distribution piping. Furthermore, the gas exhaust piping has a plurality of elliptic openings formed in a side face thereof and the openings are constructed such that the opening becomes larger in a stepwise fashion in a direction from both end portions to the central portion of the gas exhaust piping.
Abstract:
The high-pressure discharge lamp of the present invention includes: a discharge chamber that is formed in a silica glass tube, a pair of electrodes that are arranged with ends confronting each other in the discharge chamber; metal foil parts that are superposed and bonded to the other ends of the electrodes, and sealing sections for hermetically sealing the discharge chamber and which are parts for embedding the other ends of the electrodes and the metal foil parts in the glass at the two ends of the silica glass tube. The electrodes and the metal foil parts are embedded in the glass in a state in which metal coils are wrapped around the vicinities of the junctions of the electrodes and metal foil parts. The ends of the metal foil parts on the electrode side are further formed as tapered portions. In addition, the tips of the tapered portions on the electrode side are positioned, with respect to their direction of width, within the width in the radial direction of the electrodes.
Abstract:
In a method of creating an electroluminescent device, a plurality of organic electroluminescent pixels (10) are created on a transparent substrate (7), active electronic circuitry (14) is created on a second separate substrate (15), and the two substrates are assembled together with the active electronic circuitry (14) facing the transparent substrate (7) in such a manner as to form discrete electrical connections (17) between the active electronic circuitry and the organic light emitting diode pixels (10). An insulating matrix material (18) can then be used to fill the space between the substrates (7, 15).
Abstract:
Evaporation and condensation of carbon is effected by arc discharge between an anode formed of a carbon electrode and a cathode disposed facing the carbon electrode 2 in an inert gas atmosphere, and at the same time, the generated carbon nanotubes are dispersed into an inert gas and transported along with the inert gas through a transporting tube, and a jet of the inert gas containing the carbon nanotubes is emitted from a nozzle, thereby forming carbon nanotubes on a target substrate. This provides a carbon nanotube manufacturing method wherein carbon nanotubes are generated with a simple process, and the CNT patterning process is simplified by forming a carbon nanotube film on a substrate, thereby reducing costs.
Abstract:
A partition is formed by the process including a step for providing a sheet-like partition material that covers a display area and outside thereof on the surface of the substrate, a step for providing a mask for patterning that covers the display area and the outside thereof, so that a pattern of the portion arranged outside of the display area of the mask is a grid-like pattern, a step for patterning the partition material covered partially with the mask by a sandblasting process, and a step for baking the partition material after the patterning.
Abstract:
A flat panel display device with improved electrical characteristics and a simplified manufacturing process is disclosed. The device includes a semiconductor layer formed on an insulating substrate; source and drain electrodes directly contacting both end portions of the semiconductor layer, respectively; a pixel electrode having an opening portion formed thereon; a first insulating layer formed over the remaining portion of the insulating substrate except for the opening portion; a gate electrode formed on a portion of the first insulating layer over the semiconductor layer; and source and drain regions formed in both end portions of the semiconductor layer.
Abstract:
Nanotip arrays are formed by exposing a substrate to a process gas mixture that simultaneously forms nanomasks on the substrate surface and etches exposed portions of the substrate surface to form the nanotip array. Components of the process gas mixture form nanocrystallites on the surface of the substrate, thereby masking portions of the substrate from other components of the process gas mixture, which etch exposed portions of the substrate. Accordingly, nanotip arrays formed using this technique can have nanocrytallite endpoints.
Abstract:
A patterned phosphor structure, and EL laminate containing same, forming red, green and blue sub-pixel phosphor elements for an AC electroluminescent display. The patterned phosphor structure includes at least a first and a second phosphor emitting light in different ranges of the visible spectrum, but with combined emission spectra contains red, green and blue light, the first and second phosphors being in a layer, arranged in adjacent, repeating relationship to each other to provide a plurality of repeating first and second phosphor deposits. The phosphor structure also includes one or more means associated with one or more of the first and second phosphor deposits, and which together with the first and second phosphor deposits, form the red, green and blue sub-pixel phosphor elements, for setting and equalizing the threshold voltages of the red, green and blue sub-pixel phosphor elements, and for setting the relative luminosities of the red, green and blue sub-pixel phosphor elements so that they bear set ratios to one another at each operating modulation voltage used to generate the desired luminosities for red, green and blue. Photolithographic methods for producing the patterned phosphor structure are also provided. Also provided is an improved dielectric layer for use in an EL laminate, including a pressed, sintered ceramic material having, compared to an unpressed, sintered dielectric layer of the same composition, improved dielectric strength, reduced porosity and uniform luminosity in an EL laminate. Also provided are combined substrate and dielectric layer components or EL laminates containing the pressed thick film dielectric layer, and methods of forming the pressed thick film dielectric layer. A process is also provided for synthesizing strontium sulfide phosphors by providing a source of high purity strontium carbonate in a dispersed form, heating the strontium carbonate in a reactor with gradual heating up to a maximum temperature in the range of 800 to 1200null C., contacting the heated strontium carbonate with a flow of sulfur vapours formed by heating elemental sulfur in the reactor to at least 300null C. in an inert atmosphere; and terminating the reaction by stopping the flow of sulfur at a point when sulfur dioxide or carbon dioxide in the reaction gas reaches an amount which correlates with an amount of oxygen in oxygen-containing strontium compounds in the reaction product which is in the range of 1 to 10 atomic percent.
Abstract:
A method of bonding spacers to an anode plate of a field emission display. An anode plate having separate phosphor regions is provided, wherein a black matrix material is provided to separate the phosphor regions from one another. A magnetic layer is formed on the black matrix material. A thin metal film is formed on the anode plate and the magnetic layer. Spacers are disposed on the metal film above the black matrix material. An electromagnetic induction procedure is performed to heat the magnetic layer and thus serves as a heating source to produce heat, wherein the heat goes through the metal film to heat the spacers. A direct current (D.C.) electric field procedure is performed to bond the spacers to the metal film above the black matrix material.