Abstract:
A waste effluent flare may include a flare body having a streamlined exterior surface to produce a flow path that closely adheres to the exterior surface. The flare body may include an annular bulge extending circumferentially around and projecting outwardly from an exterior surface, and that is substantially axially aligned with an annular gap through which effluent is directed toward the flare body. Apertures may communicate relatively warm air from inside a body chamber to an area immediately downstream of the bulge. The head may include an initial portion substantially axially aligned with the gap that extends at a relatively small deflection angle. An atomization tube may be coupled to the flare body stem and have an inlet end fluidly communicating with the supply pipe and an outlet end disposed in a body chamber defined by the flare body, wherein the outlet end defines a discharge orifice.
Abstract:
Method for controlling bottomhole pressure in a borehole during managed pressure drilling. In the drilling procedure fluid is circulated down a drillstring and and to surface through an annulus between the drillstring and an inner-wall of the borehole. A compressor/pump is used to inject gas into the returning drilling fluid at a gas injection point. The method comprises receiving a target bottomhole pressure;determining actual bottomhole pressure during the procedure;and adjusting a variable as directed by a feedback controller,which operates to reduce the difference between the target pressure and the measured pressure. The manipulated variable may be one or any combination of: (1)pressure of drilling fluid at the entry of the fluid into the drillstring, (2) the flow rate of drilling fluid out of the drillstring into the annulus, (3)pressure of the gas exiting from the compressor, and (4) the injection rate of the gas.
Abstract:
A system and/or a method collects formation fluids using a single packer with expansion rings and/or an irregular sealing layer. The packer may have an expansion ring extending around an outer circumference. The expansion ring may seal a portion of a wellbore to sample fluid from a formation. An irregular sealing layer may facilitate leaking between drains of the packer. The irregular sealing layer may have grooves through which fluid may flow. The irregular sealing layer may be composed of fibers and/or plastic.
Abstract:
A system and methodology facilitates an operation utilizing coiled tubing. The technique comprises coupling a hydraulic assist device to coiled tubing. A fluid is flowed into an enclosure such as a wellbore and along the coiled tubing. The fluid is flowed against the hydraulic assist device, and the action of this fluid against the hydraulic assist device creates a pulling force on the coiled tubing. The pulling force facilitates movement of the coiled tubing along the wellbore or other enclosure to provide the coiled tubing with greater reach for a variety of intervention operations or other types of operations.
Abstract:
Methods for in-situ reservoir investigation by borehole seismic methods are provided using receiver(s) and a downhole source. The downhole source may be a microseismic event, and may be located relative to the receiver(s) in any configuration. The downhole source may also be a controlled source that is positioned in a reverse vertical seismic profile (RVSP) geometry with respect to the receiver(s). The methods may involve locating the receiver(s) in a first well (which may have any orientation, including vertical or horizontal), and locating the source in a monitoring well (which may have any orientation, including vertical or horizontal), such that the source in the monitoring well is positioned at a greater depth in the formation than the receivers in the first well.
Abstract:
A system and method collects one or more measurements within a borehole formed in a subsurface reservoir. The system and method provides a first downhole component having an expandable element and a first port formed in a layer of the expandable element. A wireless transceiver is connected to the first downhole component, wherein the wireless transceiver is adapted to transmit one or more wireless signals within the borehole. A first wireless sensor located at the first port and remotely with respect to the wireless transceiver, wherein the first wireless sensor is configure to receive the one or more wireless signals and collect at least one measurement within the borehole or perform at least one task related to the borehole or subsurface reservoir about the borehole.
Abstract:
Apparatus and method for detecting radiation-of-interest, such as neutron radiation, employs a gas chamber, a gas that responds to ionizing particles by producing electrons and ions, a cathode that attracts ions, and a supporting layer with a conductive pathway. The conductive pathway collects electrons and responds to electrons that drift towards the conductive pathway by inducing production of further electrons and ions within the gas. The electrons that are collected at the conductive pathway and/or the ions that drift away from the conductive pathway will induce an electrical signal, which can be used to detect the radiation-of-interest.
Abstract:
A method for improving precision of measurement of material composition of formations determined by gamma ray spectral an analysis includes determining an accurate value of an amount of a selected by analyzing a spectrum of gamma rays detected from the formations using a technique that directly relates the gamma ray spectrum to the amount of the material. A precise value of the amount of the material is determined by analyzing the spectrum of detected gamma rays that indirectly relates the gamma ray spectrum to the amount of the material. A function relating the accurate value to the precise value over a selected axial interval along the wellbore is determined. The function is applied to the accurate value at at least one selected axial position along the wellbore to determine an accurate and precise value of the amount of the material.
Abstract:
A method for gain control of a radiation detector includes measuring standard gamma ray spectra for known concentrations of selected radioactive materials found in earth formations. A standards matrix is calculated from the standard gamma ray spectra. A singular value decomposition is computed from a matrix related to measurements of gamma ray spectra of formations and the standards matrix. A radiation detector gain is computed from a minimum ratio of null space with respect to data value space of a subsurface formation measurement related matrix and the standards matrix. Gain of the radiation detector is adjusted based on the computed radiation detector gain.
Abstract:
A radiation detector may include a housing, and a scintillator body carried within the housing and including a proximal portion defining a proximal end, a distal portion defining a distal end, and a medial portion between the proximal portion and the distal portion. The scintillator body may have a constant diameter along the proximal portion, and a decreasing diameter along the distal portion from the medial portion to the distal end. The radiation detector may further include a photodetector coupled to the distal end of the scintillator body.