Abstract:
The method includes acquiring a signal (501); inputting (502), at a first time, a received symbol to a demodulator having a plurality of outputs to produce a set of early outputs; inputting (504), at a second time, the received symbol to the demodulator to produce a set of on-time outputs; inputting (505), at a third time, the received symbol to the demodulator to produce a set of late outputs; and comparing (506) at least one output in the set of early outputs with at least one output in the set of late outputs to produce a timing measure.
Abstract:
A method and apparatus is provided for generating a decision value (809) for use in signal acquisition and channel estimation. In a first embodiment a receiver (850) is provided including at least two spatially diverse antennas (600, 601) which can receive different, e.g. consecutive, segments of the same signal, a signal characteristic (e.g., energy) determination stage (840) for processing the different segments to determine the separate energy values for the segments, and an accumulator 1808) for accumulating the energy values so as to form the decision value or statistic (809). Additional embodiments are also provided.
Abstract:
An efficient apparatus for performing frequency conversion from a final IF frequency to a baseband frequency is described. A counter (401) generates two logical signals G1 (402) and G2 (403) which are passed to an exclusive-OR gate (404) and a multiplexer (406). When a control signal (411) is deasserted, multiplexer (406) passes signal G1 to I1 and signal G2 to I2; when control signal (411) is asserted, multiplexer (406) passes binary signal G1 to I2 (410) and signal G2 to I1 (407). Similarly, multiplexer (405) swaps its input real and imaginary samples when the output of exclusive-OR gate (404) is asserted; otherwise, it performs no operation on its input samples. Signals I1 (407) and I2 (410) are used to control arithmetic inverters (408) and (409) respectively. When the controlling signal for either inverter is asserted, the inverter performs arithmetic inversion, otherwise it performs no operation.
Abstract:
An efficient apparatus for performing frequency conversion from a final IF frequency to a baseband frequency is described. A counter (401) generates two logical signals G1 (402) and G2 (403) which are passed to an exclusive-OR gate (404) and a multiplexer (406). When a control signal (411) is deasserted, multiplexer (406) passes signal G1 to I1 and signal G2 to I2; when control signal (411) is asserted, multiplexer (406) passes binary signal G1 to I2 (410) and signal G2 to I1 (407). Similarly, multiplexer (405) swaps its input real and imaginary samples when the output of exclusive-OR gate (404) is asserted; otherwise, it performs no operation on its input samples. Signals I1 (407) and I2 (410) are used to control arithmetic inverters (408) and (409) respectively. When the controlling signal for either inverter is asserted, the inverter performs arithmetic inversion, otherwise it performs no operation.
Abstract:
A communication system (300, 1000) supports Hybrid Automatic Repeat Request (H-ARQ), Adaptive Modulation and Coding (AMC), active set handoff, and scheduling functions in a distributed fashion by allowing a mobile station (MS) (1014) to signal control information corresponding to an enhanced reverse link transmission to Active Set base transceiver stations (BTSs) (301, 303, 304) and by allowing the BTSs to perform control functions (314, 316, 318) that were supported by an radio network controller (RNC) in the prior art. The communication system allows time and SIR-based H-ARQ flush functions at the BTSs during soft handoff (SHO), provides a control channel structure to support scheduling, H-ARQ, AMC functions for an enhanced reverse link, or uplink, channel (414) in order to maximize throughput, and enables an MS in a SHO region to choose a scheduling assignment corresponding to a best TFRI out of multiple assignments it receives from multiple active set BTSs.
Abstract:
A Dedicated Physical Location Channel (DPLCH) is utilized by a mobile station (913) to support subscriber location functions. The DPLCH is spread by an Orthogonal Variable Spreading Factor (OVSF) code CL (502) of length 256 which is distinct from those OVSF codes assigned to other channels utilized by the mobile station (913). When a power-up function (PUF) is received by the mobile station (913), the DPLCH sub-channel amplitude is then modified relative to the other channels being utilized by the mobile station (913) using gain module GL (503) prior to combination (504) with the other channels.
Abstract:
A method and apparatus is provided for generating a decision value (809) for use in signal acquisition and channel estimation. In a first embodiment a receiver (850) is provided including at least two spatially diverse antennas (600, 601) which can receive different, e.g. consecutive, segments of the same signal, a signal characteristic (e.g., energy) determination stage (840) for processing the different segments to determine the separate energy values for the segments, and an accumulator (808) for accumulating the energy values so as to form the decision value or statistic (809). Additional embodiments are also provided.