Abstract:
A wireless terminal measures the received power of a tone corresponding to an intention base station null output, measures the received power of pilot signals, and determines a signal to noise ratio of the received pilot signal. The wireless terminal calculates a downlink signal to noise ratio saturation level representative of the SNR of a received downlink signal that the wireless terminal would measure on a received signal transmitted by the base station at infinite power. The calculated downlink signal to noise ratio saturation level is a function of the determined interference power, the measured received pilot signal power, and the determined pilot signal SNR. A report is generated corresponding to one of a plurality of quantized levels, the selected quantized level being the closest representation to the calculated downlink signal to noise ratio saturation level. The generated report is communicated using a dedicated control channel segment in a predetermined uplink timing structure.
Abstract:
Systems and methodologies are described that facilitate supporting multiple connections associated with a wireless terminal. Notifications may be provided to a primary base station upon establishment and/or removal of connections between the wireless terminal and secondary base station(s). Additionally, the multiple connections may be evaluated and a preferred connection from the set of multiple connections may be utilized to transfer data to the wireless terminal over a downlink connection.
Abstract:
A plurality of report dictionaries, e.g., uplink transmission backlog request report dictionaries, are supported in a wireless communications system. Each report dictionary provides bit mapping definition information corresponding to a set of fixed bit size request reports. Different report dictionaries are structured to accommodate different reporting conditions, needs, and/or requirements. A communications device selects a report dictionary, e.g., on a per connection basis, to be used in communicating transmission backlog information, from among the plurality of possible report dictionaries. Information characterizing active traffic flows such as the number of distinct quality of service profiles and/or the current mixture of best effort and latency constrained traffic flows is used in performing the selection of a report dictionary. The selected report dictionary is subsequently utilized to generate reports and interpret information communicated in those generated reports.
Abstract:
An initial reporting structure for an uplink dedicated control channel is used by a wireless terminal following a transition into a state of wireless terminal operation or action which makes it desirable to provide a base station with an initial set of control information which can be used to support uplink transmission of user data. Subsequently while continuing operation in a state supporting uplink transmission of user data, a recurring scheduled reporting structure for the uplink dedicated control channel is followed by the wireless terminal. The initial reporting structure provides for communication of at least some information reports, e.g., infrequently scheduled reports, which may not have been otherwise communicated during the same time interval if the recurring scheduled reporting structure had not been overridden. Thus the use of initial report sets facilitates a rapid overall understanding by the serving base station attachment point of the wireless terminal's status.
Abstract:
Techniques for sending control messages are described. In an aspect, assignment messages may be acknowledged based on either linked or dedicated acknowledgement (ACK) resources. A terminal may receive an assignment message from a base station, determine whether to acknowledge the assignment message, and determine ACK resources to use to acknowledge the assignment message. The ACK resources may be linked to a control block on which the assignment message was received, linked to resources given by the assignment message, or assigned to the terminal. The terminal may send the acknowledgement on the ACK resources. In another aspect, a control message may be acknowledged based on ACK resources determined based on the control message or the control block. The ACK resources may be linked to resources assigned by the control message or linked to the control message. The terminal may send an acknowledgement for the control message on the ACK resources.
Abstract:
Systems and methodologies are described that facilitate utilizing power-based rate signaling for uplink scheduling in a wireless communications system. A maximum nominal power (e.g., relative maximum transmit power that may be employed on an uplink) may be known to both a base station and a mobile device. For example, the base station and the mobile device may agree upon a maximum nominal power. According to another example, signaling related to a maximum nominal power for utilization on the uplink may be provided over a downlink. Further, selection of a code rate, modulation scheme, and the like for the uplink may be effectuated by a mobile device as a function of the maximum nominal power. Moreover, such selection may be based at least in part upon an interference cost, which may be evaluated by the mobile device.
Abstract:
Methods and apparatus related to the implementation and selection of alterative control information reporting formats are described. A control information reporting format, corresponding to a connection between a wireless terminal and a base station, e.g., for an uplink dedicated control channel, is selected, as a function of at least one of: an application being executed, device capability information, channel condition information, system loading information, and user quality of service information. Different wireless terminals may use different control information reporting formats at the same time. The same wireless terminal may use a different control information reporting format at different times.
Abstract:
Methods and apparatus related to determining, communicating, and/or using delay information are described. A wireless terminal determines delay information corresponding to queued information that it intends to transmit. The delay information includes a maximum queuing delay indicting a maximum amount of time data to be transmitted has been waiting to be transmitted. The determined delay information is communicated to a base station in a control information report. Alternatives formats for the control information report are possible including a report type conveying only delay information and a report type conveying delay information and queue backlog count information jointly coded. A base station uses received delay information received from one or more wireless terminals to efficiently schedule uplink traffic channel segments.
Abstract:
An uplink dedicated control channel reporting structure includes a plurality of different bit size reports, e.g. 1 bit, 3 bit and 4 bit reports, for reporting a wireless terminal's backlog information of uplink traffic request group queues. Smaller bit size reports are transmitted more frequently than larger reports. A 1 bit request report indicates whether or not there are any MAC frames of information to be communicated in a set of two request group queues. A 3 bit request report indicates an amount of backlog information corresponding to a first set of request group queues and a second set of request group queues. A 4 bit request report indicates an amount of backlog information corresponding to a set of request group queues. The 4 bit request report is capable of reporting information on any of a plurality of uplink traffic channel request group queues being maintained by the wireless terminal.
Abstract:
Techniques for sending resource requests in a wireless communication system are described. Multiple types of quality of service (QoS) information may be supported for resource requests and may include QoS class and latency deadline. A terminal may have data to send on the reverse link and may determine QoS information for the data. The QoS information may include at least one QoS type, which may be dependent on a configuration selected for use to send resource requests. The terminal may also determine backlog level information indicative of the amount of data to send. The terminal may generate a resource request with the backlog level and QoS information. The resource request may include the backlog level information and QoS class information, the backlog level information and either QoS class information or latency deadline information, the backlog level information and latency deadline information, or some other combination of information.