Abstract:
An elevator system includes a first elevator car (28) constructed and arranged to move in a first lane (30, 32, 34) and a first propulsion system (40) constructed and arranged to propel the first elevator. An electronic processor of the elevator system is configured to selectively control power delivered to the first propulsion system (40). The electronic processor includes a software-based power estimator configured to receive a first weight signal and a nm trajectory signal for calculating a power estimate and comparing the power estimate to a maximum power allowance. The electronic processor is configured to output an automated command signal if the power estimate exceeds the maximum power allowance.
Abstract:
An elevator system (100) includes an elevator car (102) that is configured to travel along a guide rail (104), and a braking assembly (116) coupled to the elevator car (102). The braking assembly (116) is configured to selectively operate in a disengagement mode that allows the elevator car (102) to travel along the guide rail (104), and an engagement mode that inhibits the elevator car (102) from traveling along the guide rail (104). The electronic braking assembly controller (128) is in signal communication with the braking assembly (116) and is configured to generate an electronic braking signal that activates the engagement mode of the braking assembly (116). When the engagement mode is activated, the elevator car (102) decelerates without exceeding a predetermined g-force (g) threshold regardless as to whether a load applied to the elevator car (102) changes such that the elevator car (102) is stopped at a floor landing (106).
Abstract:
A method of operating an elevator system is provided. The method includes powering, using a battery, the elevator system when an external power source is unavailable. The method also includes controlling, using a controller, a plurality of components of the elevator system. The controlling comprises operating at least one of the battery, an elevator car, a drive unit, and a brake. The method further includes determining, using the controller, a run profile of the elevator car in response to a selected deceleration. The method yet further includes operating, using the controller, the elevator car in response to the run profile determined, and determining, using the controller, an actual velocity of the elevator car.
Abstract:
An elevator system (10) is provided comprising: a first elevator car compartment configured to transport passengers through a hoistway from a first location to a second location; a plurality of sensors configured to capture data, the plurality of sensors comprising at least one of a first sensor (140a) located in the first elevator compartment and a second sensor (140b) located in an elevator lobby (100); a control system (110) configured to analyze the captured data and determine information in response to the captured data; and a plurality of monitors configured to display the information from the plurality of sensors, the plurality of monitors comprising at least one of a first monitor (130a) located in the first elevator compartment and a second monitor (130b) located in the elevator lobby.
Abstract:
The present disclosure relates to an elevator control system (1), comprising an elevator control device (2) for operating an elevator car (12) which is adapted to be operated within an elevator shaft (18), and an inspection control station (3) configured to communicate with the elevator control device (2) for operating at least one function of an elevator system (10) in an inspection or maintenance operation mode, and configured for attachment at a storing location (71,72) of the elevator system (10), wherein the storing location (71,72) is at the elevator car (12) or within the elevator shaft (18) or in proximity of the elevator shaft (18). The inspection control station (3) is adapted to be detachable from the storing location (71,72) and configured to operate as remote inspection control station when detached from the storing location (71,72) through wireless communication with the elevator control device (2), and is configured to be movable and operable in the inspection or maintenance operation mode from inside and outside of the elevator car (12) and within the elevator shaft (18). The disclosure also relates to an elevator system (10) comprising such elevator control system (1).
Abstract:
According to one embodiment, a method of operating an elevator system is provided. The method includes detecting, using a controller, when an external power source is unavailable. The method also includes controlling, using the controller, a plurality of components of the elevator system. The controlling comprises operating at least one of an elevator car, a drive unit, an inverter and a brake. The method further includes detecting, using the controller, an original direction of travel of the elevator car. The method yet further includes detecting, using the controller, a mode of the elevator car, wherein the mode includes at least one of a motoring mode, a near balance mode, and a regenerative mode. The method includes determining, using the controller, a target floor. The method also includes adjusting, using the controller, a velocity of the elevator car to reach the target floor in response to the mode detected.
Abstract:
Methods and systems of controlling elevators including detecting a landing stop for an elevator car, measuring load information associated with the stop, controlling stopping of the elevator at the landing using a machine based on at least one of the detected landing and the measured load information and performing dynamic compensation control of a motion state of the elevator with a computing system and the elevator machine. The dynamic compensation control includes receiving motion state information related to at least one motion state of the elevator car at the computing system, receiving the landing and load information at the computing system, applying a filter to the received information and generating a first control signal, and producing a control output from the first control signal to control the elevator machine to minimize oscillations, vibrations, excessive position deflections, and/or bounce of the elevator car at the detected landing.
Abstract:
Methods and systems to control an elevator door of an elevator car that can be moved between floors of a building. At least one registered destination call is evaluated, which makes it possible to plan the number of boarding or exiting passengers for each stopping floor. For each stopping floor, a corresponding door dwell time for the elevator door is determined to make it possible for a registered passenger to board or exit on a stopping floor. The number of passengers that exit the elevator car on the stopping floor and the number of passengers that board the elevator car on the stopping floor is also determined. The elevator door is closed regardless of the set door dwell time if the number of passengers boarding and exiting on the stopping floor determined by the sensor system corresponds to the number of boarding or exiting passengers planned for the stopping floor.
Abstract:
The invention relates to a method and arrangement for creating a safe working space in the upper part of an elevator shaft. The solution comprises a number of safety levels with pre-defined clearances and triggering limits for safety operations in order to create a safety space zone at the upper part of the elevator shaft by stopping the upwards movement of the elevator car, when the elevator is in the inspection or maintenance mode, with actions which are arranged to become more and more effective and definitive safety level by safety level.
Abstract:
A safety device of a lift system may include a car comprising an evaluation device and a measuring device. Conditions where departure from a door zone with an open car door or where impermissible accelerations/speeds are reached within the door zone are identifiable by way of the evaluation device and output signals from the measuring device. In such conditions, a control signal may be generated for braking the car. A safety circuit may be connected to the evaluation device and ensure a first safe zone in a shaft head of a lift shaft during an inspection run. The safety circuit may have a safety switch, and the car may include a tripping means for tripping the safety switch. The safety switch and the tripping means have a first relative position upon which the first safe zone is based, and entry of the car into the first safe zone during the inspection run is preventable by tripping the safety switch, which leads to generation of the control signal and braking of the car.