Abstract:
Disclosed are the nanoparticle and the method for the same, and the preparing method includes steps of mixing polyethylenimine (PEI) with the poly(acrylic acid)-bound iron oxide (PAAIO) to form a PEI-PAAIO polyelectrolyte complex (PEC) and mixing the PEI-PAAIO PEC with genetic material such as plasmid DNA to form the PEI-PAAIO/pDNA magnetic nanoparticle. The PEI-PAAIO/pDNA magnetoplex is highly water dispersible and suitable for long term storage, shows superparamagnetism, low cytotoxicity, high stability and nice transfection efficiency, and thus the PEI-PAAIO PEC can replace PEI as a non-viral gene vector.
Abstract:
Reinforced copolymers formed from a functionalized copolymer that undergoes a reactive extrusion process with an inorganic component to form the reinforced copolymer. The functionalized copolymer in the form of a block and/or graft copolymer includes hard segments and soft segments, where the soft segments are covalently bonded with a coupling agent either before or after copolymerization with the hard segments. The reinforced copolymer of the present disclosure can be suitable for use as a biomaterial and/or in medical devices.
Abstract:
Exemplary embodiments provide intermediate transfer members that can be used in electrostatographic devices and methods for using them in forming an image. The disclosed intermediate transfer members can include a plurality of nanotubes with high electrical conductivity, high thermal conductivity, and/or low humidity sensitivity. The hydrophobicity of the nanotubes can be controlled by covalently grafting hydrophobic components onto one or more nanotubes; surface treating one or more nanotubes; and encapsulating one or more nanotubes with hydrophobic components. In an exemplary embodiment, the nanotubes can be dispersed in polymer matrices and/or formed on the surface of polymer matrices of the intermediate transfer members. The intermediate transfer members can take various forms of belts, sheets, webs, films, rolls, tubes or any shape that can provide a smooth surface and rotatable function.
Abstract:
A nontoxic micro anti-bacterial film coated with silver nano-particles and a method of manufacturing the same are disclosed. The method of manufacturing a non-toxic micro anti-bacterial film coated with silver nano-particles including the steps of: producing mixed/combined powers as anti-bacterial powders, thermosensitive or photosensitive ink capsule powers, and fragrant capsule powders, and silver nano powder are combined with an additive; producing solid powders as 20-50 weight % of the mixed/combined powders, and 50-80 weight % of olefin, acrylic or urethane binder are mixed and then disperse; producing a paste type of print ink as 30 weight % of the solid powders and 70 weight % of solvent are mixed; and printing the print ink on a thin film made of olefin resin, acrylic resin, and urethane resin, using a silk screen printing method, printing a predetermined design thereon. The designs of the non-toxic micro anti-bacterial film can be pressed and transferred to the stationery products or the necessaries of life. Therefore, users can obtain joy and interest from the products as designs are changed according to temperature change. Also, the non-toxic micro anti-bacterial film exhales fragrance and has anti-bacterial operation.
Abstract:
The present invention is directed to a fluoropolymer tape having an electrically conductive surface. More specifically, the present invention is directed to a polytetrafluoroethylene (PTFE) tape and method for producing an electrically conductive tape by blending vapor-grown carbon fiber or carbon nanotubes or combinations of both with PTFE.
Abstract:
It is intended to provide a metal can from which the contents packed therein are easy to take out and which has been coated with a polyester resin film for food or with a film for food which is made of a resin consisting mainly of a polyester resin; a metal sheet which has been coated with a surface-roughened resin film and is for use in the metal can; a surface-roughened resin film for use in the metal sheet; and processes for producing these. The surface-roughened resin film is one which comprises a polyester resin and, incorporated therein, either inorganic particles or a resin incompatible with the polyester resin, e.g., a polyolefin resin, to thereby have a roughened surface. Alternatively, the surface-roughened resin film is one obtained by embossing a surface of a resin film. The surface-roughened resin film is laminated to a metal sheet. Alternatively, a resin film which has not undergone surface roughening is laminated to a metal sheet and this resin film-coated metal sheet is embossed. The resultant resin film-coated metal sheet is formed into a can by drawing or by drawing with ironing. The surface roughness is thus enhanced.
Abstract:
Self-metallizing polyimide films are created by doping polyamic acid solutions with metallic ions and solubilizing agents. Upon creating a film, the film is exposed to ultraviolet light for a specific time and then cured. The resulting film has been found to have a metallic surface layer and a metallic subsurface layer (interlayer). The layer separating the metallic layer has a uniform dispersion of small metal particulates within the polymer. The layer below the interlayer has larger metal particulates uniformly distributed within the polymer.
Abstract:
A method for economically producing nanoscale powders in general and nano-dispersed powders in particular at high throughputs. The composition of the powders produced may be oxides, carbides, nitrides, borides, chalcogenides, metals, and alloys.
Abstract:
Catalyst powders from nanoscale powders dispersed on coarser carrier powders. The composition of the dispersed fine powders may be oxides, carbides, nitrides, borides, chalcogenides, metals, and alloys. Nano-dispersed submicron powders and nano-dispersed nanopowders are discussed.
Abstract:
The present invention relates to {circle over (1)} a metal oxide or metallic Lewis acid composition comprising the metal oxide or the metallic Lewis acid carried on a cross-linked polymer compound, {circle over (2)} a metal compound composition comprising the metal compound carried on a cross-linked product of a polymer compound containing a cross-linkable condensing functional group and/or a polymer containing a polymerizable double bond formed by a condensation reaction, {circle over (3)} a method for producing a metal compound composition comprising the metal compound carried on a cross-linked polymer compound, which comprises mixing a non-cross-linked polymer compound containing a cross-linkable condensing functional group and/or a polymer compound containing a polymerizable double bond formed by a condensation reaction with a metal compound, and then cross-linking the polymer compound, {circle over (4)} a carrier for carrying a metal compound comprising a 1st polymer compound containing a cross-linkable condensing functional group and/or a 2nd polymer compound containing a polymerizable double bond formed by a condensation reaction as a non-cross-linked polymer compound and {circle over (5)} a method for improving solvent resistance, heat resistance and durability of a metal compound comprising mixing a non-cross-linked polymer compound containing a cross-linkable condensing functional group and/or a polymer compound containing a polymerizable double bond formed by a condensation reaction with a metal compound, and then cross-linking said polymer compounds.