Abstract:
A template-type calorimeter comprising a light-transparent substrate having a diffraction grating on a surface thereof, the diffraction grating being operative to diffract light incident thereon from a spaced-apart aperture into its constituent spectral components. A template is provided on a surface of the substrate and arranged to receive the diffracted spectral components. The template has formed thereon at least three spatial filters, each for selectively transmitting diffracted spectral components in accordance with respective ones of the desired color-matching functions such as the CIE x(.lambda.), y(.lambda.), z(.lambda.) or r(.lambda.), g(.lambda.), b(.lambda.) color-matching functions. The diffraction grating and the template may be mounted on opposite sides of the substrate, or they may be mounted in a laterally spaced-apart relationship on the same side of the substrate, in which case the opposite side of the substrate is coated with a reflective material. Detectors are arranged adjacent and behind each spatial filter to detect the spectral components transmitted by the respective filters, and the entire assembly is mounted in a light-tight housing which houses the aperture and the assembly in the desired spaced-apart relationship.
Abstract translation:一种模板型量热计,其包括在其表面上具有衍射光栅的透光基板,所述衍射光栅可操作以将从其间隔开的孔入射的光衍射成其组成光谱分量。 在衬底的表面上提供模板,并设置为接收衍射光谱分量。 模板上形成有至少三个空间滤波器,每个空间滤波器用于根据期望的颜色匹配功能(例如CIE + E,ovs x + EE(λ),+ E,ovs y)中的相应的选择性地传输衍射光谱分量 + EE(λ),+ E,ovs z + EE(λ)或+ E,ovs r + EE(λ),+ E,ovs g + EE(λ),+ E,ovs b + 匹配功能。 衍射光栅和模板可以安装在基板的相对侧上,或者它们可以在基板的相同侧上以横向间隔的关系安装,在这种情况下,基板的相对侧被涂覆有反射 材料。 检测器被布置在每个空间滤波器的相邻和后方,以检测由各个滤光器传输的光谱分量,并且整个组件安装在不透光的壳体中,该外壳以期望的间隔关系容纳孔和组件。
Abstract:
A robust spectrophotometer (also known as a color spectrometer or colorimeter) is self contained in a housing which is adapted to be held-held and has all of the electrical, optical and electro optic elements mounted on a board captured within the housing at one end of which light from a sample is restricted to an object area and projected after being dispersed spectrally, as with a reflection grating, to an image area at a photodetector via a lens which has an optical axis and converges the dispersed light at the image area. The dispersive element is mounted on an arm having a pivot laterally offset from the dispersive element's surface where a diverging beam of light from the object area is incident and is deflected to the image area. The geometry is such that the dispersive element may be rotated to a position where the beam is specularly deflected (zeroth order diffraction), and the spectrometer calibrated when the dispersive element is in the specular reflection/deflection position. The path from the object area is approximately perpendicular to the optical axis, and then is folded by mirrors to direct the beam to incidence on the dispersive element, from which the beam is deflected and focused by the lens, the focal length of which is such that the image and object areas are in conjugate relationship. A pivotal foot on the housing having an aperture may be used to facilitate alignment of the sample with the entrance opening to the housing of the spectrophotometer.
Abstract:
A spectrophotometer which is highly manufacturable at minimum cost nevertheless provides precision of measurement of spectra components of light which is projected therein by maintaining precise optical alignment of optical and electrical components thereof. These components are mounted in a module which is contained in a housing having an entrance aperture which defines an object area for light the spectrum of which is measured by a photodetector in the module at an image area. The module has a base plate provided by a printed circuit board on which a closed wall encompasses an area (a corral) on one side of the circuit board. The wall is a one piece structure which extends to the vicinity of the edge of the board. It is assembled with the board as a unitary structure so that the assembly is made torsionally rigid and resists bending in the plane of the board. The module may be of sufficiently small size so as to be located in a housing which is hand held, thereby providing a hand-held spectrophotometer.
Abstract:
Disclosed is an apparatus for measuring on-line the color and color-related properties of a moving sheet. Contrast ratio reflectance measurements are made for providing opacity corrections substantially in real time for a full color spectrum. An optical color sensor in accordance with the invention includes a pair of synchronized spectrometers, the first spectrometer being aligned to view a region of the sheet backed with a highly reflective ("white") material and the second spectrometer being aligned to view a region of the sheet backed with a highly absorptive ("black") material. The use of two spectrometers permits substantially simultaneous "black" and "white" measurements for a full color spectrum. The optical color sensing system further includes two light sources, a flashlamp and a continuously energized tungsten filament lamp. Light beams from the two sources are combined to form a sheet-illuminating third beam approximating the D65 standard source. The intensity of the flashlamp is electronically controlled to maintain the balance of UV to visible light that characterizes the standard source. The color sensor further includes a sheet backing system including a rotatable standard wheel carrying a white standard tile. Provision is made to permit rotation of the standard wheel and to standardize the sensor off-sheet while maintaining isolation of the white standard tile from the paper mill environment. The sheet backing system includes a paper guide plate defining an annular vortex space into which air is introduced from a pressurized source. A low pressure region thereby produced in the vortex space draws the paper sheet toward the guide plate. At the same time, circulating air spirals outwardly from the vortex space to form a thin air film or air bearing between the sheet and the paper guide. Sheet flutter is thereby minimized and damage to the sheet is prevented.
Abstract:
A rendering apparatus includes: a radiant-energy calculating device for determining a spectral radiance for each infinitesimal area of an object by using a spectral radiance of a light source irradiating the object, a spectral reflectance in the infinitesimal area of the object, and a spectral reflectance factor in a wide area of the object; a color-specification-value calculating device for calculating color specification values of a colorimetric system on the basis of the spectral radiance obtained for each infinitesimal area; a transforming device for transforming the color specification values into image data for displaying an image of the object; and a display device for displaying the image of the object on the basis of the image data.
Abstract:
A handheld portable spectrophotometer is provided including keys for input of instructions by a user, an illuminator for illuminating a sample, and a spectral analyzer for separating light reflected from the sample into spectral components to produce a signal corresponding to the level of each spectral component. A processor is provided for executing the user instructions and for analyzing the signal. The results of the signal analysis are presented on a display. A power source is provided for providing power for operation of the handheld portable spectrophotometer.
Abstract:
A probe, for use with a spectrophotometer, which senses the reflectance of a sample remote from the spectrophotometer. The probe includes a housing having a probe portion positionable proximate the sample, and an integrating chamber disposed within the probe housing and having a radiation input port, a sample port for passing diffused radiation to the sample and returning reflected radiation from the sample, a reference port, and an exit port to receive radiation reflected from the sample through the sample port. The probe further includes a guide for directing radiation to the radiation input port from a radiation source, and an element, responsive to the exit port and the reference port, for selectively conveying reflected radiation from the sample and the wall of the integrating chamber in the probe to the remote spectrophotometer.
Abstract:
The invention can be used to determine the color to be given to a dental prosthesis, for example, on the basis of color measurements performed on adjacent teeth in the mouth of the patient. An optical fiber instrument picks up light reflected from a tooth and transmits it to the inlet of a spectrocolorimeter which associated with a microprocessor in order to determine the diffuse spectral reflectance of the tooth and to calculate the tristimulus values of its apparent color under various different types of illumination. The invention is particularly suitable for determining the color of dental prostheses.
Abstract:
An improvement in the measuring elements of closed circuit systems for controlling-correcting printing in offset printing machines is provided. The values of measurements are amplified, analogically commutated, converted from analog to digital form, and then microprocessed so as to be compared with standard values established in a memory program provided for each one of the valves controlling the printers block of each one of the printing bodies. A reading is taken decomposed into three variables, each one of which corresponds to one of the three basic colors of the visible spectrum in which the light from the colored stain is diffracted by means of a ROWLAND diffraction grating in which there is reflected the light from optical fibers arranged at 45.degree. angles with respect to the printing paper, and which direct a beam of light on the colored stain. At the point of convergence of each one of the diffracted colors, there is arranged a photo pickup device whose signal is amplified by a logarithmic amplifier and connnected to a digital signal which is sent to a microprocessor for processing.