Abstract:
A liquid crystal display device is made by disposing an STN cell (16) in which nematic liquid crystal (6) having a twist angle in the range from 180° to 270° is filled and sandwiched between a first substrate (1) having a first electrode (3) and a second substrate (2) having a second electrode (4) at the center, providing a retardation film (13) and an absorption-type polarizing film (8) outside the second substrate (2) in order, and providing a reflection-type polarizing film (10) and a light absorbing film (11) outside the first substrate (1) in order. This enables a metallic silver background due to the reflected light by the reflection-type polarizing film (10) and display in black or in color by light passing through the reflection-type polarizing film (10) being absorbed in the light absorbing film (11) or only light of specific color being reflected.
Abstract:
An optical device and a display apparatus of the present invention are constructed so as to improve display characteristics of output light intensity, display contrast, and reduction of scattered light due to external light, and also to provide a large-screen. The optical device has a first stacked body and a plurality of second stacked bodies. The first stacked body includes a light guide, a first electrode, and an optical control layer. The second stacked body includes a plurality of second electrodes, the reflection film and a substrate. There is an optical control layer which changes in scattering degree or diffraction efficiency by an electric field applied by said first electrode and said second electrode.
Abstract:
A reflective liquid crystal display (LCD) including a cholesteric liquid crystal polarizing device and a liquid crystal cell superimposed with one another. In various embodiments, the reflective LCD may be a normally white mode or normally black mode device. In another variation, the liquid crystal cell may include a 90° twisted nematic liquid crystal.
Abstract:
A liquid crystal display device including a first substrate arranged on a front side, i.e., arranged on the side receiving an incident light, and a second substrate arranged on a back side, so that this second substrate extends facing the front substrate parallel thereto, the first and second substrates being connected via a sealing frame in order to delimit between them a cavity for containing the liquid crystals and including on their opposite faces a first and a second group of electrodes, respectively. The display device is connected to a control circuit for supplying suitable control voltages to selected electrodes in order to modify the optical conditions of the liquid crystal into a reflective state or into a transparent state. The display device further includes an absorbent black layer made of an electrically non-conductive material, wherein the absorbent black layer is arranged either at the surface of the second substrate or on the second group of electrodes that is formed on the second substrate.
Abstract:
A display having polymer dispersed liquid crystals, which display comprises a transparent substrate; a layer comprising polymer-dispersed cholesteric liquid crystal disposed over the substrate, which layer has more than one stable optical state in the absence of an electrical field. The display further comprises a first transparent conductor disposed between the state changing layer and the transparent support, a second conductor on the other side of the state changing layer so that when a field is applied between the first and second conductors, the liquid crystals change state. It has been found advantageous to have a non-conductive, non-field spreading dark layer of sub-micron pigments in a binder for providing an improved light absorbing function, which dark layer is disposed between the layer of polymer-dispersed cholesteric liquid crystal and the second conductor.
Abstract:
A transmissive optical device comprising: a layer (10) of light absorber material in the solid state, preferably made of a phase-change material with switchable refractive index such as GeSbTe; a partially-reflective layer (12), and a spacer layer (14) between the layer (10) of light absorber material and the partially-reflective layer (12). The spacer layer (14) and an optional cover layer (16) may be transparent conductive ITO layers which may serve to electrically switch the phase of the phase-change material layer (10), thereby switching the transmission/reflection properties of the transmissive optical device.
Abstract:
Certain embodiments relate to optical devices and methods of fabricating optical devices that pre-treat a sub-layer to enable selective removal of the pre-treated sub-layer and overlying layers. Other embodiments pertain to methods of fabricating an optical device that apply a sacrificial material layer.
Abstract:
The invention relates to a device for generating electromagnetic radiation, comprising a pump light source (1), which emits a substantially monochromatic excitation radiation (5) at a first wavelength, and an optical waveguide (2), which generates frequency-converted radiation (6, 7) at a second and a third wavelength from the excitation radiation (5) of the pump light source (1) by means of degenerate four-wave mixing. The problem of the invention is producing a device which ensures an improved pulse shape and conversion efficiency. According to the invention a filter element (3) is provided, which attenuates the radiation (6, 7) at the second or third wavelength.