Abstract:
An ionizing radiation detection system can include a self-quenching sensing element having a substantially sealed enclosure containing a plurality of gases. The plurality of gases can include an ionizing gas to ionize in response to receiving a particle of ionizing radiation. The plurality of gases can also include a halogen quenching gas. In a particular embodiment, the plurality of gases can include an oxygen-containing gas in an amount of at least approximately 5% by pressure of a total pressure of the plurality of gases. In another particular embodiment, the partial pressure of the oxygen-containing gas can be from approximately 2666 Pa to approximately 16000 Pa. In another embodiment, the radiation detection system can include an anode having a composition that is more resistant to erosion by gasses within the sensing element.
Abstract:
The present specification discloses a radiological threat monitoring system capable of withstanding harsh environmental conditions. The system has (a) one or more cables for measuring a signal induced by a radiological material emitting ionizing radiation when the radiological material comes within a predefined distance of the cables; (b) one or more stations connected with one or more cables for measuring and recording the induced signal; and (c) a central station in communication with one or more stations for gathering the recorded measurements. Radiological material includes fissile threat material such as a ‘Special Nuclear Material’ (SNM).
Abstract:
The present invention provides a method for manufacturing radiation detectors such as Geiger-Müller detectors. The method includes pre-forming a frit ring via extrusion or stamping. The preformed frit ring is placed in the aperture of a metal cathode body along with a radiation transparent window made of mica. The window is slightly larger than the perimeter of the aperture, thereby forming an overlap area. The frit ring is placed between the cathode and window within this overlap area. The assembled components are then fired at an appropriate temperature to cause fusion of the frit with the metal cathode and window to form a gas-tight seal.
Abstract:
A substantially stable, substantially portable open-window gas flow Geiger-Mueller type detector capable of monitoring ionizing radiation having an electrically conductive chamber with one or more fluid inlets and opening to receive radiation. A counting gas is provided to the chamber through the inlet(s). The detector also has at least one insulated anode positioned in the chamber and a radiation permeable cover substantially sealed over the opening. A source of electricity is connected to the chamber and electric pulses generated within the chamber are detected when an ionizing event is caused by ionizing radiation entering the chamber.
Abstract:
For simultaneously measuring the radioactivity of multiple samples arranged in a predetermined array of x rows and y columns, a fixed array of radiation counters arranged in the same array of x rows and y columns so that one of the counters is aligned with each of the multiple samples. Each of the counters has a pair of spaced electrodes; an electrical voltage source connected to the electrodes of all the counters for applying the same voltage across the electrodes of each of the radiation counters in the array; and sensing means connected to the electrodes of each of the radiation counters for independently detecting pulses of electrical current produced by ionization of the gas between the respective pairs of electrodes of each of the radiation counters. For measuring low-energy radiation, the radiation counters are windowless, a flow of ionizable gas is supplied to the counters, and the same flow rate of the ionizable gas is maintained through each of the radiation counters in the array. Preferably the radiation counters are formed in a metal plate that provides shielding to minimize "cross talk" between adjacent samples.
Abstract:
Radiation detection tube having a glass envelope surrounding an anode and cathode, and having a further conductive surface surrounding a portion of the glass envelope in the region of the anode-cathode gap, the exterior conductor electrically coupled to the anode.
Abstract:
A highly sensitive Geiger-Mueller radiation detector with improved temperature stability and working life uses a cylindrical cathode made from a nickel copper alloy preferably containing predominantly nickel. This alloy is resistant to attack by halogen quench gases used in the tube and provides an excellent surface for the electrodeposition of platinum to provide a low porosity surface.
Abstract:
A radiation-detecting device which is mounted on a gas-turbine engine to receive radiations from the afterburner combustion-zone, includes a gas-filled electrical discharge tube that is located within a tubular nose of the device and is pulse energized. The ultra-violet component of radiations from the zone and distinctive of the presence of flame in the afterburner, is transmitted to the discharge tube via a sapphire plano-convex lens, the infra-red component being attenuated by a thin gold-film coating on the planar face of the lens, whereby discharge takes place in the tube with each energizing pulse only while the flame is present. The sensitivity of the detecting device to ultra-violet radiation is enhanced by internal reflections from reflective coatings on the inner surface of the tubular nose and the glass envelope of the discharge tube. The count of a counter is advanced stepwise with each pulsing of the discharge tube towards a maximum count of 8 (or 16), and is reset to zero in response to each tube discharge so that the counter overflows only after the tube remains quiescent through more than 8 (or 16) consecutive pulsings. Overflow of the counter signifies positively the flame-out condition and initiates warning and relighting action by a control unit.
Abstract:
A halogen quenched, Geiger-Mueller tube having a stannic oxide coated tubular glass anode supported in delineated clearance-fit supports, with dynamic vibration absorbers, provides a multiplesupported, substantially resonate free, anode structure and an improved Geiger-Mueller tube that withstands extreme vibratory components.
Abstract:
A bromine doped self-quenching Geiger-Mueller tube having an operational life expectancy in excess of 1,200 hours at a temperature of 315*C. The tube comprises a passivated metal coated cathode which is conditioned or aged for operation at room temperature, thus obviating the necessity of thermally cycling the tube at progressively elevated temperatures. Useful metal coatings for the cathode include chromium, platinum, and nickelcopper alloys deposited in a layer less than about 1 mil thick. A method for passivating the metal coated cathode and subsequently conditioning the tube and its contents is disclosed.