Abstract:
An integrated circuit includes a delay lock loop (DLL) circuit that generates incremental delay line signals and a delay line output signal based on a received clock signal. A pulse-width modulation (PWM) control module generates a PWM control signal. A variable capacitance circuit is controlled based on the delay line output signal, the PWM control signal, and one of the incremental delay line signals.
Abstract:
In a high-frequency oscillator, a first resonance circuit and a second resonance circuit are respectively connected to a first amplifier circuit and a second amplifier circuit. A selection circuit includes a first switch circuit and a second switch circuit which selectively operate one of the first amplifier circuit and the second amplifier circuit. A grounded capacitor is connected to output sides of the first amplifier circuit and the second amplifier circuit. The grounded capacitor is commonly used by both the first amplifier circuit and the second amplifier circuit. An auxiliary grounded capacitor is connected between the first switch circuit and the first amplifier circuit. Accordingly, the grounded capacitor and the auxiliary grounded capacitor are connected to each other in parallel only when the first amplifier circuit is activated.
Abstract:
To determine performance degradation at functional module in a normal power state due to a power control device, voltages are applied to oscillators at a power diagnostic module. A first voltage is a supply voltage for the data processing device, and a second voltage is a supply voltage applied at a functional module of the data processing device. Counters are adjusted based on the oscillators to determine the oscillators' respective frequencies. In addition, the power diagnostic module can include a timer to measure the length of time that the functional module is in a low-power state, and an analog to digital converter to measure the voltage applied to the functional module during transitions to and from the low-power state.
Abstract:
An integrated circuit includes a delay lock loop (DLL) circuit that generates incremental delay line signals and a delay line output signal based on a received clock signal. A pulse-width modulation (PWM) control module generates a PWM control signal. A tunable circuit having variable capacitance is controlled based on the delay line output signal, the PWM control signal, and one of the incremental delay line signals.
Abstract:
It is intended to provide a VCO apparatus having: a local oscillation signal generation circuit for outputting a local oscillation signal corresponding to a frequency signal of a tuned channel to be received, the frequency signal being included in high frequency signals received by an input terminal, and a mixing circuit for outputting a baseband signal by mixing the high frequency signal and the local oscillation signal, wherein the local oscillation signal generation circuit has an oscillator for oscillating the local oscillation signal and a frequency reduction unit for outputting a frequency of the local oscillation signal oscillated by the oscillator to the mixing circuit at a ratio of ×1/N, and the local oscillation signal frequency is set to a frequency different from a communication wireless frequency used by a mobile phone by adjusting the ratio of ×1/N.
Abstract:
In one embodiment, the present invention includes a capacitor array that may provide a selected capacitance to a digitally controlled crystal oscillator (DCXO). The array may include multiple sections each having at least one array portion, where each section is to receive different significant portions of a digital control value. The different sections may have different coding schemes. Other embodiments are described and claimed.
Abstract:
A frequency tuning circuit includes a connection for coupling to a signal tap of an element which has a resonant frequency. The tuning circuit contains a controllable-capacitance capacitance array for tuning of a signal frequency of the element. The capacitance array has a multiplicity of capacitances which can be connected to a control connection via a signal. In this case, the capacitance array is coupled to the connection. A control input is used to supply a digital control word. Furthermore, the tuning circuit contains a sigma-delta modulator whose input side is coupled to the control input and whose output side is coupled to the control connection of the capacitance array. This makes it possible to produce a tuning word by means of which the effective resolution of the capacitance array can be increased.
Abstract:
To provide a voltage controlled variable capacitor which can change a capacitance value thereof in a wide controlled voltage range and control the capacitance value easily with a high precision without complicating the circuit configuration thereof, and to provide a voltage controlled variable capacitor which can change a capacitance value thereof with a good linearity. The voltage controlled varactor is configured in a manner that varactors VCk, each formed by a series connection of a fixed capacitor Ck (k=1, 2, . . . , n) and a MOS transistor Mk of N channel type, are connected in parallel. The MOS transistors M1 to Mn are configured in a manner that gate widths W are same but gate lengths L1 to Ln are elongated sequentially (that is, L1
Abstract:
A VCO system embodying the features of the present invention includes a frequency tuning circuit, a modulation circuit coupled in a parallel fashion with the frequency tuning circuit, a band tuning circuit coupled with the frequency tuning circuit in a parallel fashion having at least one switching circuit, a core circuit coupled with the frequency tuning circuit, the modulation circuit, and the band tuning circuit, wherein upon asserting a switching signal and upon adjusting a frequency turning signal, a frequency tuning bias signal, and a band tuning signal, the switching circuit is enabled for configuring the band tuning circuit to join the frequency tuning circuit for adjusting a predetermined output frequency based on a total inductance and a total capacitance provided by the core circuit, the frequency tuning circuit, the modulation circuit and the band tuning circuit.
Abstract:
Methods and apparatus are presented for performing coarse frequency tuning in a voltage controlled oscillator. The methods and apparatus are directed towards the use of a new voltage controlled oscillator comprising both a binary coding module and a thermometer coding module. The combination of the binary coding module and the thermometer coding module control a capacitance corresponding to a resonant tank which is used to coarse tune the frequency of the voltage controlled oscillator.