Abstract:
An apparatus is described that includes a light source, a first reflector, a lens and a second refiector. The first refiector is positioned to reflect a first portion of light from the light source, wherein the first portion of light is radiated from the light source in a central forward solid angle as defined by an outer edge of the first reflector. The lens is disposed azimuthally horizontal to the light source for accepting a second portion of light from the light source emitted in a peripheral forward solid angle. The second reflector reflects the first portion of light after reflectance from the first reflector and the second portion of light after passing through the lens in a composite beam.
Abstract:
An insulator for an electrical cutout having a fuse assembly, and methods of manufacturing. The insulator includes a weathershed housing and a single-piece full composite insulator body having no metal components. The insulator body includes a nonmetal composite polymer and a plurality of fibers. The insulators have improved mechanical strength and electrical performance over conventional insulators.
Abstract:
An apparatus is provided for securing to and collecting power from an electrical conductor, including a current transformer comprising a core and an electrical winding that receives an induced current from magnetic flux generated according to alternating current present on the electrical conductor, and a clamping mechanism that attaches the apparatus to the electrical conductor. According to various aspects, apparatus may include a housing that encloses circuitry for monitoring conditions of the electrical conductor, where the circuitry includes one or more sensors, and wireless communications circuitry.
Abstract:
A light emitting diode (LED) module having a configurable LED substrate capable of receiving varying numbers and layouts of LEDs are described herein. The LED substrate includes LED coupling points for receiving the LEDs and electrical traces etched into the substrate for routing power to the LEDs. The LED module can include a multi-LED over-optic having multiple over-optics that are configured to match the number and configuration of the LEDs positioned on the substrate. The LED coupling points and over- optics can be arranged symmetrically to enable the LED module to be rotated to adjust the light output distribution and direction. The LED module can include a power connection mechanism, for example located at the center of the substrate, that also allows the LED module to be rotated. One or more of the LED modules may be mounted on a heat sink and incorporated into a light fixture.
Abstract:
A light emitting diode (LED) sign lighter is positioned to illuminate a sign. One or more LED modules on the LED sign lighter are directed toward different portions of the sign. Each LED module is configured with a reflector or over-optic to control the angle of the light emitted toward the sign. Each LED module includes an array of LEDs. The configuration of each LED module within the LED sign lighter helps to reduce the build-up of environmental contaminants on the LED module. The center section of the LED sign lighter includes a compartment for housing electrical components to power the LED modules. Heat sink fins are oriented along the back side of the LED sign lighter to provide thermal efficiency for the LED modules.
Abstract:
A loadbreak elbow includes a sleeve having an upper portion defining a fuse housing and a lower portion defining a cable entrance. A shield housing is positioned within the upper portion and includes a first opening for receiving a cable connector and second opening in communication with the first opening for receiving a fuse. A fuse is positioned in the second opening of the shield housing and a fuse ferrule is threadably coupled to the cable connector in the first opening. The cable connector includes a retaining feature, and the shield housing includes a retaining means to engage the retaining feature so as to prevent the cable connector from rotating within the shield housing while the fuse ferrule is being coupled to the cable connector.
Abstract:
A light module includes one or more LEDs coupled to a circuit board, a lens disposed over at least one LED, and an adhesive layer disposed between each LED and the lens. A flange extends from at least one side of the lens. The adhesive layer fixes the lens in an optical alignment over the corresponding LED. The adhesive layer includes at least one of a non-permeable layer with an adhesive material on the top and bottom surfaces, a gas-permeable layer with an adhesive material on the top and bottom surfaces, a deposited material, and an over mold material. An alignment tool including one or more optical recesses and one or more alignment features is used in the assembly of at least one of an optical assembly and a light module that includes the optical assembly. The alignment tool facilitates precise alignment of the lenses over the LEDs.
Abstract:
A stackable cable mount power connector includes a cover having a draw screw engagement pin and a connector shell having a bushing and an insert assembly positioned therein. A draw screw having a locking pin is positioned within the bushing. The bushing includes grooves for receiving the locking pin. The connector includes multiple primary contact pins having an upper portion and a lower portion. The upper portion of the primary contact pins is positioned within the bushing. The lower portion of the primary contact pins is positioned within the insert assembly. The upper portion of the primary contact pins is configured to receive secondary contact pins. The lower portion of the primary contact pins is configured to engage a power source. The connector also includes a stud positioned within the insert assembly. The stud includes slots for receiving the locking pin
Abstract:
An emergency ballast for a fluorescent lamp includes a rechargeable battery. The emergency ballast also includes a circuit for receiving an electrical current and providing a recommended charging voltage to the battery. The electrical current is one of two amplitudes, and the circuit provides a charge to the battery without regard to the amplitude of the electrical current. The first amplitude of the electrical current can be 120 volts, and the second amplitude can be 277 volts. The emergency ballast includes a capacitor electrically coupled to the circuit that provides an additional voltage to the rechargeable battery when the electrical current is 120 volts. The emergency ballast also includes a switch for electrically decoupling the capacitor from the circuit when the electrical current is 277 volts.
Abstract:
A system described herein can include a first node within an advanced metering infrastructure (AMI) network. The first node can be configured to be installed within a portion of a meter device. The system can also include an adapter configured to function as a second node within the AMI network. The adapter can be configured to translate a signal defined based on a platform of a premise network into a signal defined based on a platform of the AMI network. The adapter can be configured to be a meter-independent device.