Abstract:
An energy conversion system including an annular member disposed around a shaft and at least partially defining a first radial flow passage that is fluidly coupled to a wave chamber and a second radial flow passage that is fluidly coupled to a port; a first plurality of nozzle vanes extending at least partially through the first radial flow passage, and configured to impart a first exit swirl angle in a fluid; a turbine wheel coupled to the shaft, disposed radially between the shaft and the annular member, defining an axial flow passage that is fluidly coupled to the first and second radial flow passages, and including a first plurality of impulse blades; and a second plurality of nozzle vanes disposed around the shaft, extending at least partially through the second radial flow passage, and configured to impart a second exit swirl angle in the fluid.
Abstract:
A collection apparatus for a separator. The collection apparatus including a housing at least partially encircling a flow separation passage and defining a chamber and a cutout, the chamber being in fluid communication with the flow separation passage to receive a separated flow therefrom, and the cutout extending outward from the chamber to at least partially deflect the separated flow.
Abstract:
An integral compressor-expander assembly, including a cryogenic expander positioned in an overhung configuration on a central shaft; a multi-stage centrifugal compressor supported on the central shaft between at least two bearings; and a device coupled to the central shaft and configured to either supply rotational power to the central shaft or generate power from rotation of the central shaft, depending upon a current operational mode of the multi-stage compressor.
Abstract:
A compressor performance adjustment system includes a compressor chassis defining an inlet passageway, a diffuser passageway coupled to the inlet passageway, and a return passageway extending from the diffuser passageway. At least one inlet vane is located in the inlet passageway. At least one diffuser vane is located in the diffuser passageway. At least one return vane is moveably coupled to the compressor chassis and located in the return passageway. Via a system of rods and actuators, the return vanes may be adjusted without disassembling the compressor chassis in order to adjust the flow incident on compressor components and adjust the performance of a compressor.
Abstract:
A system and method for controlling the acoustic signature of a turbomachine having a plurality of valves wherein an operating load is identified and an arc of admission across a plurality of nozzles is associated therewith. A valve sequencing scheme is selected and implemented to activate the arc of admission for a particular operating load so as to minimize valve noise by adjusting valves simultaneously rather than consecutively.
Abstract:
A device or system through which fluid is adapted to flow, such as, for example, a fluid- carrying conduit, flow control valve, or fluid expansion device including, for example, a steam turbine or fluid expander, according to which acoustic energy is generated by, or present within, the device or system and the acoustic energy is attenuated.
Abstract:
A turbomachine is disclosed that has a main fluid flowpath extending axially along the turbomachine with a rotating shaft partly enclosed in a casing, wherein the rotating shaft and casing are moveable relative to each other and define a clearance opening about the rotating shaft, whereby the main fluid flowpath fluidly communicates with an outside region, and a seal body defining a fluid passage having a primary fluid inlet configured to receive a pressurized fluid, a fluid outlet disposed proximate to the clearance opening, and a convergent chamber interposed therebetween, wherein the convergent chamber is configured to accelerate the pressurized fluid out of the fluid outlet so as to create a local reduced pressure at the clearance opening.
Abstract:
A shaft support device for a turbomachine including a rotary body attached to a shaft of the turbomachine. The rotary body includes a thrust balance piston and a thrust bearing collar, with the thrust balance piston and the thrust bearing collar axially overlapping. The exemplary shaft support device also includes a stationary body disposed in and fixably connected to a casing of the turbomachine. The stationary body includes a thrust bearing portion operatively engaging the thrust bearing collar of the rotary body and sealingly engaging the rotary body.
Abstract:
A separator including a shaft rotatable about a central axis, an inner drum member and an outer drum member. The inner drum member is disposed around the shaft and spaced radially therefrom to define a first flow passage, wherein the inner drum member is configured to rotate with the shaft and to separate liquid from a first portion of a flow of fluid into the separator. The outer drum member is disposed around the inner drum member, and spaced radially therefrom to define a second flow passage coaxial with the first flow passage, wherein the outer drum member is configured rotate with the shaft and to separate liquid from a second portion of the flow of fluid into the separator.
Abstract:
A closing element is for a valve assembly of a compressor unloader, the compressor including a casing with a compression chamber, the unloader including a housing defining a chamber. The valve assembly has a base between the compression and unloader chambers, a passage connecting the two chambers, a seat about the passage, and a stem bore within the base having a control chamber. The closing element includes a main body movably disposed within the stem bore and having a sealing surface disposeable against the valve seating surface to obstruct the valve passage and a control end surface within the bore control chamber. A sealing member disposed about the main body prevents flow between the control chamber and the valve passage. The main body and/or the sealing member is configured such that the main body is radially moveable to align the body sealing surface with the valve seat.