Abstract:
Systems and methodologies are described that facilitate scheduling transmission upon an uplink traffic channel in Orthogonal Frequency Division Multiplexing (OFDM) environments. Uplink scheduling may include user selection and rate selection. Further, user selection may be based on a token mechanism that provides control over fairness of allocation to disparate users. Moreover, rate selection may be based upon considerations of uplink interference mitigation.
Abstract:
Techniques for efficiently sending reports in a wireless communication system are described. Reports may be sent repetitively in accordance with a reporting format. A terminal receives an assignment of a control channel used to send reports and determines a reporting format to use based on the assignment. The reporting format indicates a specific sequence of reports sent in specific locations of a control channel frame. The terminal generates a set of reports for each reporting interval and arranges the set of reports in accordance with the reporting format. The terminal repetitively sends a plurality of sets of reports in a plurality of reporting intervals. Reports may also be sent adaptively based on operating conditions. An appropriate reporting format may be selected based on the operating conditions of the terminal, which may be characterized by environment (e.g., mobility), capabilities, QoS, and/or other factors.
Abstract:
Methods and apparatus related to control information reporting over wireless communication channels are described. Various embodiments include communicating control information format definition information over a wireless link. For example, in some embodiments, a base station downloads control information reporting format definition information, e.g., corresponding to a new release or a custom reporting format, into a wireless terminal. As another example, a wireless terminal generates a custom control information reporting format, that it intends to use, and communicates definition information corresponding to the generated custom control reporting format to a base station.
Abstract:
Methods and apparatus for efficient communication of backlog information, e.g., backlog information indicating amounts of uplink traffic waiting to transmitted by a wireless terminal are described. Delta backlog reports are used in addition to absolute backlog reports, thus reducing control signaling overhead, at least some information communicated in a delta backlog report being referenced with, respect to a previously transmitted backlog report. A base station uses received backlog information from wireless terminals in determining scheduling of uplink traffic channel segments In some embodiments, the absolute backlog report uses a first fixed size report format, while the delta backlog report using a second fixed size report format, said second size being different from said first fixed size.
Abstract:
Methods and apparatus for communicating information using a plurality of report dictionaries are described. A plurality of request dictionaries are implemented for a wireless terminal to use for multi-bit uplink transmission backlog request reports communicated via the dedicated control channel. Each dictionary defines a different bit mapping interpretation for a set of multi-bit uplink transmission backlog request reports, e.g. a 3 bit uplink request report and a 4 bit uplink request report. The plurality of request dictionaries includes a default dictionary and additional dictionaries. The implementation of a plurality of alternative request dictionaries expands the reporting possibilities allowing a wireless terminal to use a reporting format well- suited to its current needs. The default dictionary is mandated to be used under certain predefined conditions, e.g., upon entry into the active state. Rules for transitioning between different dictionaries and continuing to use a selected dictionary are described.
Abstract:
Certain aspects of the present disclosure relate to a technique of designing a Media Access Control (MAC) scheduler for uplink communication in high rate wireless data systems, such as Long Term Evolution (LTE) wireless communication systems.
Abstract:
Systems and methodologies are described that facilitate utilizing different power control algorithms as a function of access terminal speed. For instance, instantaneous Channel Quality Indicator (CQI) reports can be inverted for slow moving access terminals while long-term geometry inversion (e.g., average CQI report inversion) can be utilized for quick moving access terminals. Speed of the access terminal can be estimated based upon time correlation of CQI values. Further, selection of implementing instantaneous CQI inversion or long-term geometry inversion can be based upon the estimated speed of the access terminal.
Abstract:
Systems and methodologies are described that facilitate enhanced resource scheduling for a wireless communication system. As described herein, packets associated with a common flow that arrive within a predetermined time period following a leading packet associated with the flow can be grouped into respective packet bursts. Subsequently, system bandwidth, transmit power, and/or other communication resources can be scheduled based on an analysis of the respective packet bursts. As provided herein, by analyzing respective packet bursts in lieu of individual packets, computational and resource overhead required for resource scheduling can be significantly reduced. In one example described herein, a resource schedule is determined by selecting one or more flows to be assigned bandwidth from among a plurality of flows based on an analysis of packet bursts respectively associated with the flows. Sufficient bandwidth can subsequently be scheduled for the selected flows for transmission of the respectively associated packet bursts.
Abstract:
Systems and methodologies are described that facilitate dividing scheduling algorithms into background and foreground aspects capable of simultaneously servicing a multiplicity of disparate flows in wideband communications networks. The systems provided herein arbitrarily select prospective time horizons, generate optimal bandwidth allocation targets based on a plurality of flows observed by the system, and utilizes the optimal bandwidth targets to assign flows to users over the entirety of the prospective time horizon.
Abstract:
Methods and apparatus related to control information reporting over wireless communication channels are described. Various embodiments include communicating control information format definition information over a wireless link. For example, in some embodiments, a base station downloads control information reporting format definition information, e.g., corresponding to a new release or a custom reporting format, into a wireless terminal. As another example, a wireless terminal generates a custom control information reporting format, that it intends to use, and communicates definition information corresponding to the generated custom control reporting format to a base station.