Abstract:
A solid lubricating coating film capable of imparting favorable lubricity and corrosion resistance to a connection for oil country tubular goods. Two or more solid lubricants are dispersed in a binder resin. Graphite is contained in an amount of 50% or more and 90% or less of a total weight of the solid lubricants, and the graphite has a scaly shape and an average particle diameter of 10.0 μm or less. A solid lubricant made of one or more materials selected from BN, mica, talc, MCA, MoS2, PTFE, PFA, and FEP is further contained as other solid lubricants of the two or more types of solid lubricants. The binder resin contains a PEEK resin having an average particle diameter of 20 μm or less as a main component, and the PEEK resin is contained in an amount of 70% or more of a total weight of the binder resin.
Abstract:
A powder lubricant composition according to the present invention includes 65 parts by mass to 95 parts by mass of sodium borate, and 5 parts by mass to 35 parts by mass of cryolite. A method for manufacturing a seamless steel pipe according to the present invention includes adhering the above-described powder lubricant composition to a pipe inner surface of a work piece which is piercing rolled to have a tubular shape, and elongation rolling on the work piece after the adhering of the powder lubricant composition.
Abstract:
The invention provides a lubricant composition containing (A) an ionic liquid having an anion represented by formula 1: (Rf1-SO2) (Rf2-SO2) N− or formula 2: (Rf3) (Rf3) (Rf3) PF3− wherein Rf1 and Rf2 in formula 1 may be the same or different and are each F, CF3, C2F5, C3F7 or C4F9, and Rf3 in formula 2 may be the same or different and is CF3, C2F5, C3F7 or C4F9; and (B) a fatty acid amine salt in an amount of 0.1 to 5.0 mass %. The lubricant composition of the invention can favorably be used under a high vacuum or an ultra high vacuum, or under high temperatures, and exhibits excellent rust prevention properties.
Abstract:
A solid stick composition for use on steel surfaces that are in sliding or rolling-sliding contact. The solid stick composition comprises a vinyl ester resin, for example, from about 20 to about 80 weight percent vinyl ester resin, a solid lubricant, for example from about 0 to about 80 weight percent lubricant, and optionally a friction modifier, for example from about 0 to about 40% weight percent friction modifier, or a combination of a solid lubricant and a friction modifier. The solid stick comprises at least one of the lubricant or the friction modifier. A method of controlling friction between a metal surface and a second metal surface by applying the solid stick composition to one or more than one of the metal surfaces is also disclosed as well as a method of reducing lateral force in a rail system comprising applying the solid stick composition onto a wheel or rail surface.
Abstract:
In one embodiment, a substrate, for example a tool used in hot metalforming operations, is coated with an enamel nanoparticulate graded coating. The nanoparticles in the coating may be boron nitride nanoparticles. The coating may include a first portion adjacent a surface of the substrate, and a second portion adjacent the first portion. The first portion of the coating may have a lower volume fraction of nanoparticles than the second portion. The first portion has excellent adhesion to the surface of the substrate, and the second portion reduces friction and wear. The coated tool may be formed by applying at least one layer of a coating mixture to a surface of the tool and heating the coating mixture. A metal workpiece may be formed into an article by contacting the metal workpiece against the coated surface of the tool.
Abstract:
Provided is a grease composition with a long service life under high-temperature conditions, considerable low-evaporability, and incombustibility.The invention provides a grease composition comprising, as a base oil, an ionic liquid formed of a cation and an anion and having an ion concentration of 1 mol/dm3 or more as measured at 20° C., and a thickener, wherein the grease composition has a dropping point of 260° C. or higher.
Abstract:
A solid lubricant formulation useful for lubricating the flanges of locomotive wheels, railcar wheels, rail tracks and in applications where it is desirable to reduce friction when metal contacts metal. The solid lubricant formulation including at least one non-polylactic acid-based polymeric carrier, at least one polylactic acid-based polymer, and at least one lubricant powder.
Abstract:
A protective agent for an image bearing member of an image forming apparatus. The protective agent is applied onto a surface of the image bearing member and includes a hydrophobic organic compound (A), an inorganic fine particle (B), and an inorganic lubricant (C).
Abstract:
A method for treatment of bacterial infections with rifalazil administered once-weekly, or twice-weekly. A method for treatment of tuberculosis caused by Mycobacterium tuberculosis, infections caused by Mycobacterium avium complex, infections caused by Chlamydia pneumoniae and infections caused by Helicobacter pylori by administering to a patient suffering from the bacterial infection 1-100 mg of rifalazil once or twice a week. In this dose regimen, the treatment is fast, efficacious and eliminates undesirable secondary symptoms observed with daily doses of 1-50 mg of rifalazil.
Abstract:
A process is disclosed for manufacturing a lubricant composition comprising combining a superabsorbent polymer with a material for decreasing friction between moving surfaces. The superabsorbent polymer absorbs from about 25 to greater than 100 times its weight in water and may comprise a polymer of acrylic acid, an acrylic ester, acrylonitrile or acrylamide, including co-polymers thereof or starch graft co-polymers thereof or mixtures thereof. A product produced by the process includes the material for decreasing friction comprising a petroleum lubricant containing an additive, water containing an additive, synthetic lubricant, grease, solid lubricant or metal working lubricant, wherein the synthetic lubricant, grease, solid lubricant or metal working lubricant optionally contain an additive. A process comprising controlling the delivery of a lubricant to at least one of two moving surfaces in order to decrease friction between said moving surfaces, is also disclosed. This process includes applying the lubricant composition to at least one of the surfaces. The lubricant composition in this instance comprises a superabsorbent polymer combined with a material for decreasing friction between moving surfaces, wherein the material for decreasing friction comprises a petroleum lubricant, water, synthetic lubricant, grease, solid lubricant or metal working lubricant, and optionally an additive.