Abstract:
Composite reinforcer (R-2) self-adhesive, by curing, to a diene rubber matrix, which can be used as reinforcing element for a tire, comprising: one or more reinforcing thread(s) (20), for example a carbon steel cord; a first layer (21) of a thermoplastic polymer, the glass transition temperature of which is positive, for example, a polyamide 6,6, covering individually said thread or each thread or collectively several threads; a second layer (22) comprising a functionalized diene elastomer bearing functional groups selected from epoxide, carboxyl, acid anhydride and acid ester groups, for example, an epoxidized natural rubber, covering the first layer (21). Process for manufacturing such a composite reinforcer and rubber article or semi-finished product, especially a tire, incorporating such a composite reinforcer.
Abstract:
A composite wire or thread-based reinforcement is coated with rubber and may be used for reinforcing a finished rubber article, such as a tyre. The reinforcement includes one or more textile or metallic reinforcing wires or threads, and a coating rubber that coats each wire or thread. The coating rubber is formed of a rubber composition that includes at least one diene elastomer, a reinforcing filler, between 10 and 150 phr (parts by weight per hundred parts of elastomer or rubber) of a platy filler, and a crosslinking system. The coating rubber has improved water-barrier properties, thus giving the composite wire or thread-based reinforcement better protection against corrosion or ageing due to penetration of water, for example through tyre tread.
Abstract:
Composite reinforcer (R-2) capable of adhering directly to a diene rubber matrix, which can be used as reinforcing element for a tire, comprising: one or more reinforcing thread(s) (20), in particular a carbon steel cord; a first layer (21) of a thermoplastic polymer, the glass transition temperature of which is positive, in particular a 6,6 polyimide, covering individually said thread or each thread or collectively several threads; a second layer (22) of a composition comprising a poly(p-phenylene ether) (“PPE”) and a functionalized unsaturated thermoplastic stirene (“TPS”) elastomer, the glass transition temperature of which is negative, said elastomer bearing functional groups selected from epoxide, carboxyl, acid anhydride and acid ester groups, in particular an epoxidized SBS elastomer, covering the first layer (21). Process for manufacturing a composite reinforcer and rubber article or semi-finished product, especially a tire, incorporating such a composite reinforcer.
Abstract:
Composite reinforcement (R-2) that is self-adhesive by curing to a diene rubber matrix, which can be used as reinforcing element for a tire, comprising: at least one reinforcing thread (20), for example a carbon steel cord; a first layer (21) of a thermoplastic polymer, the glass transition temperature of which is positive, for example 6,6 polyamide, covering said thread; and a second layer (22) comprising an unsaturated thermoplastic stirene elastomer, the glass transition temperature of which is negative, for example an SBS (stirene-butadiene-stirene) copolymer, covering the first layer (21). Process for manufacturing such a composite reinforcement and rubber article or semi-finished product, especially a tire, incorporating such a composite reinforcement.
Abstract:
The invention relates to cord (20) comprising a number of filaments twisted together. The peripheral surface of the cord (20) is at least partially coated with an adhesion promoting coating (24). The adhesion promoting coating (24) comprises at least a first layer comprising a silicon based coating, a titanium based coating, a zirconium based coating or a combination thereof. The invention further relates to a composite material comprising such a cord (20) embedded in a polymer material. Furthermore the invention relates to a method to manufacture such a cord (20).
Abstract:
Compositions and methods for treating metal substrates and/or bonding metal substrates to polymeric materials, such as rubber, are provided. The compositions include at least one substantially hydrolyzed amino silane and at least one substantially hydrolyzed sulfur-containing silane Optionally, the compositions include a nano-size particulate material. The compositions provide coatings on metal substrates for protecting the metal from corrosion and for adhering rubber-like polymeric compositions to the metal with polymer-to-metal vulcanization conditions less dependent on the coating thickness, and with use of less coating materials.
Abstract:
A fire resistant rope and method of making the same. The fire resistant rope comprises a core, a jacket, and a fire retardant coating. The core comprises a plurality of strands. Each core strand comprises a plurality of core yarns, and each core yarn comprises a plurality of high tensile strength fibers. The jacket comprises a plurality of jacket strands. Each jacket strand comprises a plurality of jacket yarns and each jacket yarn comprises a plurality of high temperature resistant fibers. The fire retardant coating formed on at least one of the core and the jacket. The fire retardant coating expands when subjected to temperatures above a state-change level. At least a portion of the expanded coating inhibits transfer of heat to the core. The state-change level is below a failure temperature defined by the materials from which at least some of the fibers forming the core are formed.
Abstract:
An improved rope is formed from a blend of fluoropolymer fibers and high tenacity polyolefin fibers. The fibers and/or the rope are coated with a composition comprising an amino functional silicone resin and a neutralized low molecular weight polyethylene. The ropes are useful in marine applications, such as in deep sea lifting, and have improved cyclic bend over sheave fatigue resistance.
Abstract:
In order that spaces, including a space in the central portion, inside a steel cord used as a reinforcement by being embedded in a tire or the like are filled with an uncured rubber, the uncured rubber is coated on plural steel core filaments which are then stranded to form a single layer steel cord, the core then being stranded with uncoated outer layer filaments. Consequently, it is possible to exhibit satisfactory corrosion resistance and satisfactory fatigue resistance as a steel cord, shorten a curing time in tire component assembling or the like to attain energy saving and prolong the life of a steel cord itself and the life of a tire or the like using the same as a reinforcement. Further, production can be performed at low cost.
Abstract:
To improve tensile strength without impairing flexibility and adhesion to concrete, and to form a thick coating in a surface layer part for preventing a basis material from being exposed by damage to the coating, a method of forming double coatings on a prestressing strand includes a primary painting process after a pre-treatment process, in which a resin coating is formed only at the surface layer, a secondary painting process in which respectively individual state resin coating is formed on an outer peripheral face of each of the core wire and surrounding wires under a loosened and separated state, thereby forming a double coating for each surrounding wire, and a finishing process of tightening and retwisting the surrounding wires about the core wire to an original state. The obtained prestressing strand has the double coating portions only at the surface layer and sufficient flexibility and adhesion to concrete.