Abstract:
A simple and compact apparatus, and a method, for determining the characteristics of a number of fluids used in the truck and automotive industries including coolant, bio- diesel, gas-ethanol and diesel engine fluid (DEF). The apparatus includes a sample container (26) providing optical paths of different lengths for making measurements on a sample. The dual path length design allows the apparatus to capture both NIR and UV spectral ranges. The qualitative and quantitative properties of the fluid under test are compared to test results under normal conditions or to the properties of unused fluid. Two light sources (64, 67) are used within a spectrometer with each source being associated with a different optical path length.
Abstract:
A miniature spectrometer (100) can be used in situ to diagnose tissue and organs by means of tissue autofluorescence. The spectrometer (100) comprising a source (200) for emitting at least two wavelengths of light and a plurality of sensors (150, 160) is disposed at the distal end of an interventional device (110).
Abstract:
An object (206) to be imaged or detected is illuminated by a single broadband light source or multiple light sources emitting light at different wavelengths. The light is detected by a detector (200), which includes a light-detecting sensor (400) covered by a hybrid filter. The hybrid filter includes a multi-band narrowband filter (516) mounted over a patterned filter layer (508). The light strikes the narrowband filter (516), which passes light at or near the multiple wavelengths of interest while blocking light at all other wavelengths. The patterned filter layer (508) alternately passes the light at one particular wavelength while blocking light at the other wavelengths of interest. This allows the sensor (400) to determine either simultaneously or alternately the intensity of the ligth at the wavelengths of interest. Filters (902) may also be mounted over the light at the light sources to narrow the spectra of the light sources.
Abstract:
The present invention relates to a semiconductor processing system that employs infrared-based thermopile detector for process control, by analyzing a material of interest, based on absorption of infrared light at a characteristic wavelength by such material. Specifically, an infrared light beam is transmitted through a linear transmission path from an infrared light source through a sampling region containing material of interest into the thermopile detector. The linear transmission path reduces the risk of signal loss during transmission of the infrared light. The transmission path of the infrared light may comprise a highly smooth and reflective inner surface for minimizing such signal loss during transmission.