Abstract:
A unified system of programming communication. The system encompasses the prior art (television, radio, broadcast hardcopy, computer communications, etc.) and new user specific mass media. Within the unified system, parallel processing computer systems, each having an input (e.g., 77) controlling a plurality of computers (e.g., 205), generate and output user information at receiver stations. Under broadcast control, local computers (73, 205), combine user information selectively into prior art communications to exhibit personalized mass media programming at video monitors (202), speakers (263), printers (221), etc. At intermediate transmission stations (e.g., cable television stations), signals in network broadcasts and from local inputs (74, 77, 97, 98) cause control processors (71) and computers (73) to selectively automate connection and operation of receivers (53), recorder/players (76), computers (73), generators (82), strippers (81), etc. At receiver stations, signals in received transmissions and from local inputs (225, 218, 22) cause control processors (200) and computers (205) to automate connection and operation of converters (201), tuners (215), decryptors (224), recorder/players (217), computers (205), furnaces (206), etc. Processors (71, 200) meter and monitor availability and usage of programming.
Abstract:
A unified system of programming communication. The system encompasses the prior art (television, radio, broadcast hardcopy, computer communications, etc.) and new user specific mass media. Within the unified system, parallel processing computer systems, each having an input (e.g., 77) controlling a plurality of computers (e.g., 205), generate and output user information at receiver stations. Under broadcast control, local computers (73, 205), combine user information selectively into prior art communications to exhibit personalized mass media programming at video monitors (202), speakers (263), printers (221), etc. At intermediate transmission stations (e.g., cable television stations), signals in network broadcasts and from local inputs (74, 77, 97, 98) cause control processors (71) and computers (73) to selectively automate connection and operation of receivers (53), recorder/players (76), computers (73), generators (82), strippers (81), etc. At receiver stations, signals in received transmissions and from local inputs (225, 218, 22) cause control processors (200) and computers (205) to automate connection and operation of converters (201), tuners (215), decryptors (224), recorder/players (217), computers (205), furnaces (206), etc. Processors (71, 200) meter and monitor availability and usage of programming.
Abstract:
A messaging system may enable a server to assign unique identifiers to a plurality of clients. These identifiers enable a client to determine whether a message is specifically targeted to that client or, as an alternative, whether the client is a member of a group of targeted clients. In one embodiment, each client includes a client identifier that may include code portions that are common to other members of a particular addressable client group. In addition, the client may include agents devoted to particular functions that may be uniquely addressable by the server.
Abstract:
A unified system of programming communication. The system encompasses the prior art (television, radio, broadcast hardcopy, computer communications, etc.) and new user specific mass media. Within the unified system, parallel processing computer systems, each having an input (e.g., 77) controlling a plurality of computers (e.g., 205), generate and output user information at receiver stations. Under broadcast control, local computers (73, 205), combine user information selectively into prior art communications to exhibit personalized mass media programming at video monitors (202), speakers (263), printers (221), etc. At intermediate transmission stations (e.g., cable television stations), signals in network broadcasts and from local inputs (74, 77, 97, 98) cause control processors (71) and computers (73) to selectively automate connection and operation of receivers (53), recorder/players (76), computers (73), generators (82), strippers (81), etc. At receiver stations, signals in received transmissions and from local inputs (225, 218, 22) cause control processors (200) and computers (205) to automate connection and operation of converters (201), tuners (215), decryptors (224), recorder/players (217), computers (205), furnaces (206), etc. Processors (71, 200) meter and monitor availability and usage of programming.
Abstract:
A targeted advertising system uses a machine learning tool to select an asset for a current user of a user equipment device, for example, to select an ad for delivery to a current user of a digital set top box in a cable network. The machine learning tool first operates in a learning mode to receive user inputs and develop evidence that can characterize multiple users of the user equipment device audience. In a working mode, the machine learning tool processes current user inputs to match a current user to one of the identified users of that user equipment device audience. Fuzzy logic may be used to improve development of the user characterizations, as well as matching of the current user to those developed characterizations. In this manner, targeting of assets can be implemented not only based on characteristics of a household but based on a current user within that household.
Abstract:
Methods are provided for predicting uplink interference potential to a mobile satellite system (MSS) generated by ancillary terrestrial components (ATCs) of an ancillary terrestrial network (ATN) and/or ATC radioterminals that are configured to terrestrially use/reuse satellite frequencies that are used and/or authorized for use by a MSS. The methods include measuring power transmitted by and/or received at one or more radioterminals communicating with one or more terrestrial networks and/or transmitted by and/or received at the one or more terrestrial networks communicating with the one or more radioterminals using terrestrial frequencies that are at least partially outside a range of the satellite frequencies. Uplink interference potential to the MSS generated by terrestrial use/reuse of satellite frequencies by the ATN and/or the ATC radioterminals is predicted responsive to the measured power. Related ancillary terrestrial networks are also described.
Abstract:
A vehicle messaging method (600) and system (100) can include any number of data sources (101-103), an interface (104) that formats messages and addresses from the data sources, and a corresponding number of messaging servers (111-113) that receive targeted messages intended for a predetermined subset of subscribers associated with a vehicle identification number (VIN). Each messaging server can include a corresponding controller (121-123) programmed to assign (604) targeted messages to a predetermined channel and encode (606) the addresses of the targeted messages to the predetermined subset of subscribers using a VIN or portion thereof. The controller can be further programmed to transfer (608) the targeted messages and addresses to a satellite uplink (107) and satellite (110) via a messaging uplink interface (106) for retransmission and reception by a plurality of selective call receivers 109 addressable individually using a predetermined VIN or portion thereof.
Abstract:
Apparatus and method for sending a multicast packet in a mobile digital broadcast system are provided. The mobile digital broadcast system includes a broadcaster for indicating the designated recipient in an Internet Protocol (IP) header of a multicast packet and including a temporary IP address of the recipient in the IP header when multicasting data of a designated recipient; a receiver for providing the received multicast packet to an application program for outputting a digital broadcasting when the receiver joins a group of the multicast packet and the recipient is designated to the receiver upon receiving the multicast packet; and an IP allocating server for allocating a temporary IP address when the receiver requests to allocate the temporary IP address, storing the allocated temporary IP address and ID information of the receiver, and sending the allocated temporary IP address and the ID information of the receiver to the broadcaster.
Abstract:
A system for providing enhanced radio content to a remote user is disclosed. The system includes at least one input that receives non-radio input; and, at least one output interconnected to the at least one input via a hub, wherein the at least one output receives the enhanced radio content via the hub after at least one manipulation of the non-radio input by the hub to form the enhanced radio content, wherein the at least one manipulation is in accordance with the at least one non-radio input.
Abstract:
Aspects of the invention provide a system and method for receiving information in a vehicle. Information pertaining to the vehicle's driver may be stored. Information pertaining to the vehicle's driver may be made audile through the vehicle's radio system.