Abstract:
The present disclosure relates to a heterophasic polypropylene compositions comprising 78-85% by weight of a propylene homopolymer or copolymer matrix with up to 2.0% by weight of ethylene units, 15-22% by weight of an elastomeric ethylene-propylene copolymer and a clarifying agent. The composition has an intrinsic viscosity of the xylene soluble fraction at room temperature of from 0.5 to 1.5 dl/g and a melt flow rate (230° C., 2.16 kg) of 0.5 to 10 g/10 min. The compositions of the present disclosure can be used to prepare sheets for thermoforming applications.
Abstract:
The present technology relates to a solid catalyst component for the polymerization of olefins comprising Mg, Ti and an electron donor of the general formula (I): where R1 is selected from C1-C15 hydrocarbon groups, the R2 groups are equal to or different from each other, are hydrogen, or the R1 groups can be fused together to form one or more cycles and A is a bivalent bridging group. The catalyst components of the present disclosure exhibit high activity and stereospecificity in the polymerization of olefins.
Abstract:
A solid catalyst component for the polymerization of olefins comprising Mg, Ti, Cl and at least an electron donor compound which is the reaction product obtained by bringing into contact a Mg compound and a Ti compound having at least a Ti-halogen bond with an electron donor selected from specific diphenol derivatives.
Abstract:
A polyolefin compositions comprising: A) From 77 wt % to 90 wt %, of a propylene homopolymer having the fraction soluble in xylene at 25° C. lower than 2 wt %; B) from 10 wt % to 23 wt % of a copolymer of ethylene with one C4-C10 alpha-olefin containing from 20 wt % to 30 wt %, of said C4-C10 alpha-olefin derived units; said composition having the value of melt flow rate (MFR) at 230° C., 2.16 kg of from 0.5 to 4.5 g/10 min; the total content of ethylene of from 10 wt % to 18 wt %; the value of the intrinsic viscosity of the total fraction soluble in Xylene at 25° C. (AMXSIVtot) is less than 1.5 dl/g.
Abstract:
The present invention relates to a slurry process for preparing an ethylene polymer having a melt flow ratio F/P, which is the ratio among the melt index value measured according to ASTM 1238 condition “F” and the melt index value measured according to ASTM 1238 condition “P” of equal to or lower than 27, carried out in two or more stages of polymerization at temperatures in the range from 60 to 120° C., in which at least two of the said two or more polymerization stages are carried out under different amounts of molecular weight regulator, said process being carried out in the presence of (A) a solid catalyst component comprising Ti, Mg, halogen, having a porosity (PF), measured by the mercury method and due to pores with radius equal to, or lower than, 1 μm, of at least 0.3 cm3/g and a surface area determined by BET method, of lower than 100 m2/g, and being further characterized by the fact that more than 50% of the titanium atoms are in a valence state lower than 4 and (B) of an organoaluminum compound.
Abstract:
Spherical adducts comprising a MgCl2, an alcohol ROH in which R is a C1-C10 hydrocarbon group, present in a molar ratio with MgCl2 ranging from 0.5 to 6 and less than 20% mol based on the mol of MgCl2 of a compound of formula Mg(OR1)2 in which R1 is selected from C1-C10 alkyl groups or R2CO groups in which R2 is selected from C1-C6 alkyl or aryl groups.
Abstract:
Propylene polymer compositions comprising: A) from 70 wt % to 95 wt %, of a random copolymer of propylene with ethylene, containing from 1.5 wt % to 4.5 wt %, of ethylene derived units, having a content of fraction insoluble in xylene at 25° C. of not less than 93%; B) from 5 wt % to 35 wt %, of a copolymer of propylene with ethylene, containing from 7.0 wt % to 17.0 wt % of ethylene derived units; the sum A+B being 100; wherein the melt flow rate, MFR. (Melt Flow Rate according to ASTM 1238, condition L, i.e. 230° C. and 2.16 kg load) ranges from 40 g/10 min and 130 g/10 min; and wherein the relation (I) is fulfilled: 10
Abstract:
A process for the preparation of random copolymer of propylene containing up to 6.0% by weight of ethylene units, suitable for the manufacture of pipes, by copolymerizing propylene and ethylene in the presence of a catalyst system comprising the product obtained by contacting the following components:(a) a solid catalyst component comprising a magnesium halide, a titanium compound having at least a Ti-halogen bond and at least two electron donor compounds one of which being present in an amount from 40 to 90% by mol with respect to the total amount of donors and selected from succinates and the other being selected from 1,3 diethers,(b) an aluminum hydrocarbyl compound, and(c) optionally an external electron donor compound.
Abstract:
A process and apparatus for producing olefin polymers are disclosed, comprising:a. polymerizing one or more olefins in the gas phase, in the presence of an olefin polymerization catalyst, whereby growing polymer particles flow along a cylindrically-shaped downward path in densified form under the action of gravity so as to form a densified bed of downward-flowing polymer particles b. allowing said polymer particles to flow through a restriction of the densified bed, such restriction being positioned in a restriction zone extending from the bed upward to a distance of 15% of the total height of the densified bed; and c. metering an antistatic agent through a feed line connected to the densified bed at a feed point being located in a feed zone extending from the top of the restriction upward, to a distance five times the diameter of the section of the densified bed above the restriction.
Abstract:
Fibers comprising a polypropylene obtainable by a process comprising the steps of: (i) polymerizing propylene in the presence of a catalyst system comprising the product obtained by contacting the following components: (a) a solid catalyst component comprising a magnesium halide, a titanium compound having at least a Ti-halogen bond and at least two electron donor compounds one of which being present in an amount from 40 to 90% by mol with respect to the total amount of donors and selected from succinates and the other being selected from 1,3 diethers, (b) an aluminum hydrocarbyl compound, and (c) optionally an external electron donor compound, to obtain a polypropylene precursor having a melt flow rate MFR1; (ii) subjecting the thus-obtained polypropylene precursor to visbreaking to obtain a visbroken polypropylene having a melt flow rate MFR2; (iii) spinning the visbroken polypropylene obtained in the previous step; wherein MFR2 is comprised between from 15 to 40 g/10 min, the ratio MFR2/MFR1 is comprised between 8 and 18, both MFR1 and MFR2 being measured according to ISO method 1133 (230° C., 2.16 kg).