Abstract:
An electronic device includes a first device terminal and a second device terminal. A first and a second thyristor are reverse-connected between the two device terminals. A first and a second MOS transistor are respectively coupled between the conduction electrodes (emitters and collectors) of the two NPN transistors of the two thyristors. A third MOS transistor is coupled between the emitters of the two NPN bipolar transistors of the two thyristors and a fourth MOS transistor is coupled between the bases of the two PNP bipolar transistors of the two thyristors. A gate region is common to all the MOS transistors and a semiconductor substrate region includes the substrates of all the MOS transistors.
Abstract:
A method for generating a radio frequency signal, wherein a signal to be transmitted is decomposed into a weighted sum of periodic basic signals of different frequencies.
Abstract:
A method for manufacturing a fin MOS transistor from an SOI-type structure including a semiconductor layer on a silicon oxide layer coating a semiconductor support, this method including the steps of: a) forming, from the surface of the semiconductor layer, at least one trench delimiting at least one fin in the semiconductor layer and extending all the way to the surface of the semiconductor support; b) etching the sides of a portion of the silicon oxide layer located under the fin to form at least one recess under the fin; and c) filling the recess with a material selectively etchable over silicon oxide.
Abstract:
A semiconductor device includes a substrate wafer and having a front face and a back face. A front hole is formed in the front face and a multilayer capacitor is formed in the front hole. A back hole is formed in the back face of the substrate wafer to expose at least a portion of the multilayer capacitor. A front electrical connection on the front face and a back electrical connection in the back hole are used to make electrical connection to first and second conductive plates of the multilayer capacitor which are separated by a dielectric layer. The front hole may have a cylindrical shape or an annular shape.
Abstract:
An electronic device includes a thyristor having an anode, a cathode, a first bipolar transistor disposed on the anode side. A second bipolar transistor is disposed on the cathode side. These two bipolar transistors are nested and connected between the anode and the cathode. A MOS transistor is coupled between the collector region and the emitter region of the second bipolar transistor. The transistor has a gate region connected to the cathode via a resistive semiconductor region incorporating at least a part of the base region of the second bipolar transistor.
Abstract:
An integrated circuit includes an integrated transformer of the balanced-to-unbalanced type with N channels, wherein N is greater than 2. The integrated transformer includes, on a substrate, N inductive circuits that are mutually inductively coupled, and respectively associated with N channels.
Abstract:
A volatile memory includes volatile memory cells in which data write and read operations are performed. The memory cells are arranged in rows and in columns and are distributed in first separate groups of memory cells for each column. The memory includes, for each column, a write bit line dedicated to write operations and connected to all the memory cells of the column and read bit lines dedicated to read operations. Each read bit line is connected to all the memory cells of one of the first groups of memory cells. Each memory cell in the column is connected to a single one of the read bit lines.
Abstract:
An image sensor including a pixel array, each pixel including, in a substrate of a doped semiconductor material of a first conductivity type, a first doped region of a second conductivity type at the surface of the substrate; an insulating trench surrounding the first region; a second doped region of the first conductivity type, more heavily doped than the substrate, at the surface of the substrate and surrounding the trench; a third doped region of the second conductivity type, forming with the substrate a photodiode junction, extending in depth into the substrate under the first and second regions and being connected to the first region; and a fourth region, more lightly doped than the second and third regions, interposed between the second and third regions and in contact with the first region and/or with the third region.
Abstract:
A method of fabricating a semiconductor device including providing a gate structure on a channel portion of a semiconductor substrate, wherein the gate structure includes at least one gate dielectric on the channel portion of the semiconductor substrate and at least one gate conductor on the at least one gate dielectric. An edge portion of the at least one gate dielectric is removed on each side of the gate structure, wherein the removing of the edge portion of the gate dielectric provides an exposed base edge of the at least one gate conductor and an exposed channel surface of the semiconductor substrate underlying the gate structure. The sidewall of the gate structure is oxidized, which also oxidizes at least one of the exposed base edge of the at least one gate conductor and the exposed channel surface of the semiconductor substrate that is underlying the gate structure.
Abstract:
Electronic component including a ternary content-addressable memory component, configured to compare the input data items with a set of pre-recorded reference data words; the memory component incorporates a matrix of elementary cells arranged in lines and columns; each line incorporates cells in each of which is recorded one bit of one of the reference data words; the cells of a given column are dedicated to the comparison of the same bit of the input data word; each cell incorporates: two memory points storing the data representing the reference data bit; a comparison circuit connected to the memory points, with a comparison point of which the potential represents the comparison if the input data bit and the data stored in the memory points, and also incorporating a common comparison circuit to which are connected the comparison circuits of all or part of the cells of a given column; the comparison circuit incorporates terminals to which the bit from the input data word and its complement are applied.