Abstract:
A composite gas separation module includes a porous substrate; an intermediate layer at the porous substrate that includes particles and a binder metal, wherein the binder metal is uniformly distributed throughout the intermediate layer; and a dense gas-selective membrane, wherein the dense gas-selective membrane overlies the intermediate layer. In one embodiment, the intermediate layer includes a gradient of particle size from a surface of the intermediate layer proximate to the porous substrate to a surface of the intermediate layer distal to the porous substrate. The particles of the intermediate layer can include particles selected from the group consisting of metal particles, metal oxide particles, ceramic particles, zeolite particles, and combinations thereof.
Abstract:
Multi-modal coils for coupling MRI RF signals from an anatomical region(s) to be imaged. The coil includes a segmented annular base ring conductor including a plurality of capacitances disposed between the segments, and at least one arcuate conductor symmetrically connected at each end to the base ring, one end terminating in direct contact with the base ring, the other end electrically connected to the base ring via two of the capacitive electrical connections. The RF coil is operable in multiple receiving modes in phase quadrature to establish a rotating magnetic field phasor orthogonal to the temporally constant uniform magnetic field of the magnetic resonance instrument. The RF coil can be combined with a second RF coil to simultaneously image two anatomical regions.
Abstract:
An electrochemical device comprises an electrochemical reactor that includes a single or multiple electrochemical cells and a galvanostat, a gas source and a fuel cell system. Each of the electrochemical cells includes an anode compartment and a cathode compartment. The gas source is in fluid communication with the anode or cathode compai ment of each of the electrochemical cells, including at least two components that are selectively reactive relative to each other. The selectivity of the two components of the gas source is dependent upon an electrical potential between an anode of the anode compartment and a cathode of the cathode compartment, whereby a constant current between the anode and cathode causes the electrical potential to oscillate autonomously while the gas components are directed through the anode or cathode compartment. The oscillation in potential causes autonomous oscillation of selective reaction of the gas components.
Abstract:
A composite gas separation module includes a porous metal substrate; an intermediate layer that includes a powder having a Tamman temperature higher than the Tamman temperature of the porous metal substrate and wherein the intermediate layer overlies the porous metal substrate; and a dense hydrogen-selective membrane, wherein the dense hydrogen-selective membrane overlies the intermediate layer. In another embodiment, a composite gas separation module includes a porous metal substrate; an intermediate powder layer; and a dense gas-selective membrane, wherein the dense gas-selective membrane overlies the intermediate powder layer.
Abstract:
The present invention relates to a method for curing a defect in the fabrication of a composite gas separation module and to composite gas separation modules formed by a process that includes the method. The present invention also relates to a method for selectively separating hydrogen gas from a hydrogen gas containing gaseous stream. The method for curing a defect in the fabrication of a composite gas separation module includes depositing a first material comprising palladium over a porous substrate, thereby forming a coated substrate, wherein the coated substrate contains at least one defect. Then, the coated substrate can be selectively surface activated proximate to the defect, thereby forming at least one selectively surface activated region of the coated substrate. A second material can be then preferentially deposited on the selectively surface activated region of the coated substrate, whereby the defect is cured.
Abstract:
An adaptive attenuator is provided, the adaptive attenuator including at least two sensor ports. Each of the sensor ports receives an input signal that includes data on a first channel and a reference sequence on a second channel. One or more delay ports is coupled to each sensor port for receiving the input signal, and a computational port is coupled to the sensor ports and the delay ports. The computational port receives the input signal and the output of the delay ports and performs one or more computations to produce a processed signal which is substantially free of interference. A phase restorer receives the processed signal and the reference sequence and restores phase to the processed signal in accordance with the reference sequence.
Abstract:
A portable reconfigurable geolocation system is provided. The system includes a portable user node and one or more portable pseudolite nodes in communication one another and with the user node. Each of the user nodes and pseudolite nodes includes a transmitter that generates a signal on one or more carrier frequencies. Each signal is modulated with digital signals necessary to establish distances between the nodes and to convey data between the nodes. Each node also includes a receiver for receiving and demodulating the signals transmitted between the nodes, and a processor for receiving the demodulated signals, extracting data values and derived values from the demodulated signals and determining a three-dimensional position of each node in the system.
Abstract:
An ammonium selective ionophore for use in ion selective electrodes. The electrodes can be used to measure ammonium chloride, for example, at different concentrations (curves 1-6 in Figure 1).
Abstract:
A pH-measuring method and device (50) for monitoring and then correcting for electrode drift is provided. The device includes a pH-measuring electrode (54) and more than one reference electrodes (52a-52e). During operation, the pH-measuring device is placed in contact with a sample (51). The pH value measured at each electrode pair is due to the electrical potential difference between the pH electrode and the reference electrode. The maximum and minimum pH values are determined, and then the remaining pH values are averaged together to generate an overall average pH. The maximum and minimun pH values are subtracted from the average pH to generate a difference which is then compared to a user defined drift level to determine if a particular electrode is deficient. The pH values from deficient electrodes are not considered when the overall pH of the sample is determined.