Abstract:
Rigid, closed-cell polyurethane foams are produced by a RIM process by reacting an organic polyisocyanate with an isocyanate-reactive mixture in which a significant amount of a bio-based polyol is present. The foams produced by this process are characterized by improved heat sag and heat distortion temperature.
Abstract:
A process for producing a polyurethane or polyisocyanurate construction board, the process comprising of providing an A-side reactant stream that includes an isocyanate-containing compound; providing a B-side reactant stream that includes a polyol, where the B-side reactant steam includes a blowing agent mixture including isopentane and a blowing agent additive that has a Hansen Solubility Parameter (δt) that is greater than 15 MPa0.5; and mixing the A-side reactant stream with the B-side reactant stream to produce a reaction mixture.
Abstract:
Storage-stable two-component polyurethane or polyisocyanurate spray foam compositions are disclosed, said compositions comprising: (a) an A-side component comprising one or more polyisocyanate and one or more blowing agent; and (b) a B-side component comprising one or more polyol and one or more blowing agent comprising pressurized gaseous carbon dioxide and one or more liquid blowing agent; wherein both the A-side component and the B-side component, separately, generate less than 300 ppm of fluoride ion after one week of aging at 50° C.
Abstract:
The present invention relates to a process for producing translucent polyurethane and polyisocyanurate foams by reaction of a component A, comprising A1 at least one polyol reactive with component B; A2 optionally at least one amine; A3 water and optionally formic acid or at least one physical blowing agent or mixtures thereof; A4 at least one foam stabilizer; A5 optionally auxiliary and/or additive substances; A6 optionally at least one flame retardant; A7 at least one catalyst; and a component B, comprising B1 at least one aliphatic or cycloaliphatic polyisocyanate component or a combination thereof; and B2 optionally at least one hydrophilized isocyanate; and B3 more than or equal to 10 parts by weight and up to 70 parts by weight of an aromatic polyisocyanate component, wherein the parts by weight of B3 are based on the sum of the parts by weight of B1 to B3 which are normalized to 100 parts by weight. The invention is characterized in that the reaction of component A with component B is carried out at an isocyanate index of at least 150, wherein the obtained translucent polyurethane and polyisocyanurate foams have a light transmission according to EN ISO 13468-2:2006 of at least 10% and a haze of at least 70%, determined according to ASTM D1003-13, in each case measured at a layer thickness of 20 mm. The present invention further relates to the polyurethane and polyisocyanurate foams obtained by the process and to the use thereof as a construction element, as a wall element, as a floor element, in buildings, in vehicles or lamps.
Abstract:
Storage-stable two-component polyurethane or polyisocyanurate spray foam compositions are disclosed, said compositions comprising: (a) an A-side component comprising one or more polyisocyanate and one or more blowing agent; and (b) a B-side component comprising one or more polyol and one or more blowing agent comprising pressurized gaseous carbon dioxide and one or more liquid blowing agent; wherein both the A-side component and the B-side component, separately, generate less than 300 ppm of fluoride ion after one week of aging at 50° C.
Abstract:
A polymer foam system comprises a polyaldehyde, an inorganic powder, a polycarbamate, a blowing agent and an acid catalyst wherein the polyaldehyde is in an A-side of the polymer foam system and the polycarbamate is in a B-side of the polymer foam system wherein the inorganic powder is selected from a group consisting of Group II oxides and hydroxides, the polyaldehyde has an average functionality of more than one and three or less, the polycarbamate has an average functionality of 3.4 or more and 4.2 or less, the polycarbamate has an average equivalent weight of 200 grams per equivalent or more and 325 grams per equivalent or less, and the average particle size of the inorganic powder in micrometers divided by the ratio of concentration in millimoles of inorganic powder to acid catalyst is 2.5 or more an 9.3 or less.
Abstract:
An ultra-light graphene-rubber foam particle for soles is prepared from, by weight, 60-65 parts of natural rubber, 8-12 parts of isoprene rubber, 8-12 parts of butadiene rubber, 6-8 parts of styrene butadiene rubber, 0.8-1.0 parts of modified graphene, 0.08-0.12 parts of poly(N-vinylacetamide), 0.8-1.0 parts of silicone oil, 3.0-3.5 parts of inorganic nano-particles, 1.2-1.5 parts of activated zinc oxide, 0.8-1.0 parts of zinc stearate, 1.0-1.2 parts of stearic acid, 0.8-1.0 parts of cross-linking agents, 2.0-3.0 parts of flow promotors, and 1.5-1.8 parts of foaming agents. According to the invention, the modified graphene is uniformly dispersed into the rubber materials, so that the ultra-light graphene-rubber foam particle has good thermal stability, wear resistance and tensile strength, the permanent compressive-deformation performance and thermal contraction resistance are improved, and the weight is reduced by over 50%.
Abstract:
Disclosed are a foaming material, a thermal insulation cabinet, and preparation methods therefor. The foaming material comprises 100 parts of a combined polyol, 10-30 parts of a foaming agent composition, and 120-150 parts of an isocyanate. In the present invention, the type of the polyol used in a foaming system is adjusted in order to increase the content of a polyester polyol and reduce the content of a polyether polyol, such that the compressive strength of the foaming material is significantly improved without increasing or changing the injection amount.
Abstract:
A method for synthesising polyurethane foam compositions convenient for use in areas wherein rigidity and lightness are required together in automotive sector and including the steps of: conduct of polyol dosage adjustment, adding inflating reaction catalyser onto polyol of convenient amount and mixing at mechanical mixture, adding glycerine while mixing is continued, adding surfactive while mixing is continued, adding gelling reaction catalyser while mixing is continued, adding cell opening agent while mixing is continued, adding cell opening agent while mixing is continued, adding at least an inflating agent selected from a group consisting of n-pentane, cyclo-pentane, C3H8O2 gas and C2H4O2 gas while mixing is continued, conduct of temperature adjustment of polyol base mixture, conduct of isocyanide dosage adjustment in a separate place, injecting polyol base mixture into reaction container from one side and isocyanides from other side, conduct of temperature control during reaction and opening mold and removing final product.
Abstract:
A process for producing a polyurethane or polyisocyanurate construction board, the process comprising: (i) providing an A-side reactant stream that includes an isocyanate-containing compound; (ii) providing a B-side reactant stream that includes a polyol, where the B-side reactant stream includes a blowing agent that includes a pentane and a blowing agent additive that has a Hansen Solubility Parameter (8t) that is greater than 17 MPa°′5; and (iii) mixing the A-side reactant stream with the B-side reactant stream to produce a reaction mixture.